Hi,
I want to setup a DeepLearing environment for my project.
After installing ubuntu 20.04 on my MSI GT83VR 6RF which has two Nvidia GTX 1080 gpus, I then installed Nvidia Driver 530 on it! after that i then installed CUDA and Cudnn on it! from the website!
Now i can see
$ nvidia-smi
Tue Jun 27 11:39:23 2023
±--------------------------------------------------------------------------------------+
| NVIDIA-SMI 530.41.03 Driver Version: 530.41.03 CUDA Version: 12.1 |
|-----------------------------------------±---------------------±---------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce GTX 1080 Off| 00000000:01:00.0 Off | N/A |
| N/A 34C P8 4W / N/A| 131MiB / 8192MiB | 0% Default |
| | | N/A |
±----------------------------------------±---------------------±---------------------+
| 1 NVIDIA GeForce GTX 1080 Off| 00000000:02:00.0 Off | N/A |
| N/A 38C P8 7W / N/A| 6MiB / 8192MiB | 0% Default |
| | | N/A |
±----------------------------------------±---------------------±---------------------+
±--------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 1148 G /usr/lib/xorg/Xorg 100MiB |
| 0 N/A N/A 1485 G /usr/bin/gnome-shell 28MiB |
| 1 N/A N/A 1148 G /usr/lib/xorg/Xorg 4MiB |
±--------------------------------------------------------------------------------------+
It has Cuda version 12.1 as can be seen from the output!
and then
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243
shows cuda V10 !!
but for my deeplearning env, i have used conda to activate an ENV!
So after activating, i installed pytorch with the cuda 11.8 version!
Now inside my env using vscode in python :
Pytorch Version: 2.0.1
Cuda Availablity: True
GPU Count: 2
CUDA version: 11.8
cuDNN version: 8700
GPU Count: 2
GPU Name: NVIDIA GeForce GTX 1080
_CudaDeviceProperties(name=‘NVIDIA GeForce GTX 1080’, major=6, minor=1, total_memory=8105MB, multi_processor_count=20)
I’m not sure if my system has conflicts as the cuda and cudnn version?
Ho to fix this conflict? ( do i need to remove all the cuda and cudnn and create a new ENV with desired cuda and cudnn inside each one?
For now i want to run a program that needs libcudnn8=8.1.0.77-1+cuda11.2
What should i do?
Are CONDA ENVs isolated from each other and also to the original system?
can i have multiple cuda and cudnn in the same ENV or in the same system with different ENVs?
Thanks
Best regards