This is my code:

```
class gwRNN(nn.Module):
#declare a few variables with initialisation function:
def __init__(self, batch_size, n_steps, n_inputs, n_neurons, n_real_outputs, num_layers):
super(gwRNN, self).__init__()
self.batch_size = batch_size
self.n_steps = n_steps
self.n_inputs = n_inputs
self.n_neurons = n_neurons
self.n_real_outputs = n_real_outputs
self.num_layers = num_layers
# declare basic RNN layer
self.basic_rnn = nn.RNN(self.n_inputs, self.n_neurons, num_layers, nonlinearity = 'relu', dropout=0)
# declare fully-connected layer
self.FC = nn.Linear(self.n_neurons, self.n_real_outputs, bias= False) #nn.linear Applies a linear transformation to the incoming data
def init_hidden(self,): # returns hidden state with zero values
# (num_layers, batch_size, n_neurons)
return (torch.zeros(self.num_layers, self.batch_size, self.n_neurons))
def forward(self, X):
# transforms X to dimensions: n_steps X batch_size X n_inputs
X = X.permute(1, 0, 2)
# The data flows through the RNN layer and then through the fully-connected layer.
self.batch_size = X.size(1) # size of 2nd element of X
self.hidden = self.init_hidden()
lstm_out, self.hidden = self.basic_rnn(X, self.hidden) #SEE ABOVE for self.basic_rnn and nn.RNN !!
out = self.FC(self.hidden) # output represent the log probabilities of the model.
return out.view(-1, self.n_real_outputs) # batch_size X n_output
```

I’d like to add stack rnns by changing num_layers, but when I do this my code doesn’t work as it returns out with shape (n_layers*batch size) X n_output instead of batch_size X n_output