Adding model parameters to a list

I have a model defined as:

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.cl1 = nn.Linear(25, 60)
        self.cl2 = nn.Linear(60, 84)
        self.fc1 = nn.Linear(84, 10)


    def other_params(self):

        self.other_params_list = nn.ParameterList([
            nn.Parameter(torch.randn(60, 25)),
            nn.Parameter(torch.randn(84, 60)),
            nn.Parameter(torch.randn(84, 10))

    def forward(self, x):
        x = F.relu(self.cl1(x))
        x = F.relu(self.cl2(x))

        return self.fc1(x)

I’d like to use a meta-learning approach to learn weights of the linear layers of the network in the inner loop and learn the parameters in other_params_list in an outer optimization loop. How can I define a new list of params that excludes other_params_list from model.parameters(), to pass to the inner loop optimization model?

EDIT: My solution is to define:

        self.model_params_list = nn.ParameterList([

is there anything more glorious than this? like subtracting lists without a need to add every parameter one by one? or perhaps a loop over model params? Note that for the latter, I can’t define model.parameters() in the MyModel class.