Broken pipe for data_loading_tutorial on windows10

Thanks for your suggestion. I tried but now I have a new error:
Can’t pickle local object ‘main..FaceLandmarksDataset’
Still when I set num_workers=0, this error will be gone? Any solutions? I use Spyder. and Python 3.6
My code is as follows:

# -*- coding: utf-8 -*-

from __future__ import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils

# Ignore warnings
import warnings
warnings.filterwarnings("ignore")

def main():    
    plt.ion()   # interactive mode

    class FaceLandmarksDataset(Dataset):
        """Face Landmarks dataset."""
    
        def __init__(self, csv_file, root_dir, transform=None):
            """
            Args:
                csv_file (string): Path to the csv file with annotations.
                root_dir (string): Directory with all the images.
                transform (callable, optional): Optional transform to be applied
                    on a sample.
            """
            self.landmarks_frame = pd.read_csv(csv_file)
            self.root_dir = root_dir
            self.transform = transform
    
        def __len__(self):
            return len(self.landmarks_frame)
    
        def __getitem__(self, idx):
            img_name = os.path.join(self.root_dir,
                                    self.landmarks_frame.iloc[idx, 0])
            image = io.imread(img_name)
            landmarks = self.landmarks_frame.iloc[idx, 1:].as_matrix()
            landmarks = landmarks.astype('float').reshape(-1, 2)
            sample = {'image': image, 'landmarks': landmarks}
    
            if self.transform:
                sample = self.transform(sample)
    
            return sample
    
    
    
    transformed_dataset = FaceLandmarksDataset(csv_file='faces/face_landmarks.csv',
                                               root_dir='faces/')
    
    dataloader = DataLoader(transformed_dataset, batch_size=4,
                            shuffle=True, num_workers=4)
    enumerate(dataloader)
    
if __name__=='__main__':
    main()