Because after inserting new layers in between resnet original layers, it changes the names of the further layers of the resnet model.
See self.sc_norms layers in the below code. Names of all layers after first sc_norm layer insertion gets changed. Please answer @ptrblck
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, drop=0, sagnet=True, style_stage=3):
super().__init__()
self.drop = drop
self.sagnet = sagnet
self.style_stage = style_stage
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(self.drop)
self.fc = nn.Linear(512 * block.expansion, num_classes)
# SCNorm
self.sc_norms = nn.ModuleList([SCNorm(c) for c in [64, 128, 256]])
if self.sagnet:
# randomizations
self.style_randomization = StyleRandomization()
self.content_randomization = ContentRandomization()
# style-biased network
style_layers = []
if style_stage == 1:
self.inplanes = 64
style_layers += [self._make_layer(block, 64, layers[0])]
style_layers.append(SCNorm(64)) # scnorm layer
if style_stage <= 2:
self.inplanes = 64 * block.expansion
style_layers += [self._make_layer(block, 128, layers[1], stride=2)]
style_layers.append(SCNorm(128)) # scnorm layer
if style_stage <= 3:
self.inplanes = 128 * block.expansion
style_layers += [self._make_layer(block, 256, layers[2], stride=2)]
style_layers.append(SCNorm(256)) # scnorm layer
if style_stage <= 4:
self.inplanes = 256 * block.expansion
style_layers += [self._make_layer(block, 512, layers[3], stride=2)]
self.style_net = nn.Sequential(*style_layers)
self.style_avgpool = nn.AdaptiveAvgPool2d(1)
self.style_dropout = nn.Dropout(self.drop)
self.style_fc = nn.Linear(512 * block.expansion, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
for i, layer in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
if self.sagnet and i + 1 == self.style_stage: # before passing through style stage, randomize the content
# randomization
x_style = self.content_randomization(x)
x = self.style_randomization(x)
x = layer(x)
# Passing x through SCNorm of layer i
if i != 3:
x = self.sc_norms[i](x)
# content output
feat = self.avgpool(x)
feat = feat.view(x.size(0), -1)
feat = self.dropout(feat)
y = self.fc(feat)
if self.sagnet:
# style output
x_style = self.style_net(x_style)
feat = self.style_avgpool(x_style)
feat = feat.view(feat.size(0), -1)
feat = self.style_dropout(feat)
y_style = self.style_fc(feat)
else:
y_style = None
return y, y_style