Can libtorch load model from memory?

I hava an encrypt model.pt.
I want decrypt model in memory and use libtorch load it while do inference.
Is there any API is avaliable?

This is the same as loading from a file, you could use torch::jit::load to load model with std::istream

You could try something like this ->

struct MLP : public torch::nn::Module
{
	torch::nn::Linear fc1{ nullptr }, fc2{ nullptr }, fc3{ nullptr };

	MLP()
	{
		fc1 = register_module("fc1", torch::nn::Linear(2, 10));
		fc2 = register_module("fc2", torch::nn::Linear(10, 10));
		fc3 = register_module("fc3", torch::nn::Linear(10, 1));
	}

	torch::Tensor forward(torch::Tensor x)
	{
		x = torch::leaky_relu(fc1->forward(x));
		x = torch::leaky_relu(fc2->forward(x));
		return torch::sigmoid(fc3->forward(x));
	}

	std::vector<char> SaveMemory()
	{
		std::ostringstream oss;
		torch::serialize::OutputArchive archive;

		this->save(archive);
		archive.save_to(oss);

		std::string s = oss.str();

		const char* ptr = s.c_str();
		size_t length = s.size();
		std::vector<char> retval(ptr, ptr + length);
		
		return retval;
	}
	
	void LoadMemory(std::vector<char>& data, c10::Device device)
	{
		std::istringstream iss(std::string(data.begin(), data.end()));
		
		torch::serialize::InputArchive archive;
		archive.load_from(iss, device);
		this->load(archive);
	}
};

void main()
{
	try
	{
		auto testInput = torch::randn({ 1, 2 });

		std::vector<char> savedState;

		{
			auto net = std::make_shared<MLP>();
			auto output1 = net->forward(testInput);
			std::cout << "Output before save: " << output1 << std::endl;
			savedState = net->SaveMemory();
		}

		{
			auto net = std::make_shared<MLP>();
			auto output1 = net->forward(testInput);
			std::cout << "Output before load: " << output1 << std::endl;

			net->LoadMemory(savedState, c10::Device(c10::DeviceType::CPU));

			auto output2 = net->forward(testInput);
			std::cout << "Output after load: " << output2 << std::endl;
		}
	}
	catch (std::runtime_error& e)
	{
		std::cout << e.what() << std::endl;
	}
	catch (const c10::Error& e)
	{
		std::cout << e.msg() << std::endl;
	}

	system("PAUSE");
}

In a similar vein as @cyanM, passing std::stringstreams would be a canonical way to pass “non-files” to libtorch.

Best regards

Thomas