Can you train Transformer sequentially?

I’m currently trying to train a BART, which is a denoising Transformer created by Facebook researchers. Here’s my Transformer code

import math

import torch

from torch import nn

from Constants import *

class Transformer(nn.Module):

    def __init__(self, input_dim: int, output_dim: int, d_model: int = 200, num_head: int = 8, num_e_layer: int = 6,

                 num_d_layer: int = 6, ff_dim: int = 1024, drop_out: float = 0.1):



            input_dim: Size of the vocab of the input

            output_dim: Size of the vocab for output

            num_head: Number of heads in mutliheaded attention models

            num_e_layer: Number of sub-encoder layers

            num_d_layer: Number of sub-decoder layers

            ff_dim: Dimension of feedforward network in mulihead models

            d_model: The dimension to embed input and output features into

            drop_out: The drop out percentage


        super(Transformer, self).__init__()

        self.d_model = d_model

        self.transformer = nn.Transformer(d_model, num_head, num_e_layer, num_d_layer, ff_dim, drop_out,


        self.decoder_embedder = nn.Embedding(output_dim, d_model)

        self.encoder_embedder = nn.Embedding(input_dim, d_model)

        self.fc1 = nn.Linear(d_model, output_dim)

        self.softmax = nn.Softmax(dim=2)

        self.positional_encoder = PositionalEncoding(d_model, drop_out)

    def forward(self, src: torch.Tensor, trg: torch.Tensor, src_mask: torch.Tensor = None,

                trg_mask: torch.Tensor = None):

        embedded_src = self.positional_encoder(self.encoder_embedder(src) * math.sqrt(self.d_model))

        embedded_trg = self.positional_encoder(self.decoder_embedder(trg) * math.sqrt(self.d_model))

        output = self.transformer.forward(embedded_src, embedded_trg, src_mask, trg_mask)

        return self.softmax(self.fc1(output))

class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout=0.1, max_len=5000):

        super(PositionalEncoding, self).__init__()

        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)

        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))

        pe[:, 0::2] = torch.sin(position * div_term)

        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_buffer('pe', pe)

    def forward(self, x):

        x = x +[:x.size(0), :]

        return self.dropout(x)

and here’s my training code

def train(x: list):


    loss = 0.

    batch_sz = len(x)

    max_len = len(max(x, key=len)) + 1  # +1 for EOS xor SOS

    noise_x = noise(x)
    src_x = list(map(lambda s: [SOS] + [char for char in s] + [PAD] * ((max_len - len(s)) - 1), noise_x))

    trg_x = list(map(lambda s: [char for char in s] + [EOS] + [PAD] * ((max_len - len(s)) - 1), x))

    src = indexTensor(src_x, max_len, IN_CHARS).to(DEVICE)

    trg = targetsTensor(trg_x, max_len, OUT_CHARS).to(DEVICE)

    names = [''] * batch_sz

    for i in range(src.shape[0]):

        probs = transformer(src, trg[:i + 1])

        loss += criterion(probs, trg[i])



    return names, loss.item()

This doesn’t seem to be training properly though as the denoising is totally off. I thought maybe there’s something wrong with my code or you can’t train Transformers this way.