I am using the nn.Linear layer as part of a graph classifier (in pytorch geometric). The network looks like this:

```
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GraphConv(in_channels=768, out_channels=16)
self.conv2 = GraphConv(in_channels=16, out_channels=2)
# PROBLEM
self.fc1 = nn.Linear(16 * 2, 2)
def forward(self, data):
x, edge_index, edge_weight = data.x, data.edge_index, data.edge_attr
x = self.conv1(x, edge_index, edge_weight)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index, edge_weight)
x = F.relu(x)
#PROBLEM
x = x.view(-1, 16 * 2)
x = self.fc1(x)
return F.softmax(x, dim=1)
```

Now ,I am feeding a list of graphs of different sizes, such as:

```
[Data(edge_attr=[218, 1], edge_index=[2, 218], x=[203, 768], y=[1]),
Data(edge_attr=[1306, 1], edge_index=[2, 1306], x=[1281, 768], y=[1]),
Data(edge_attr=[244, 1], edge_index=[2, 244], x=[234, 768], y=[1])]
```

So I need to somehow be able to read the 0th shape of x before defining the size of my linear layer and doing the view reshaping. How can this be done?