_combine_histograms histogram_with_output_range = torch.zeros((Nbins * downsample_rate), device=orig_hist.device) RuntimeError: Trying to create tensor with negative dimension -4398046511104: [-4398046511104]

Hi,
This is the latest error I get (after updating the PReLU_Quantized (link to implementation is here by the way):
The inputs are included in the log below (as X) and the error only happens in SEBlock module which its definition is also given below all other modules that use the PReLU_Quantzied module run fine except SEBlock!:

Size (MB): 89.297826
QConfig(activation=functools.partial(<class 'torch.quantization.observer.HistogramObserver'>, reduce_range=True), weight=functools.partial(<class 'torch.quantization.observer.PerChannelMinMaxObserver'>, dtype=torch.qint8, qscheme=torch.per_channel_symmetric))
Post Training Quantization Prepare: Inserting Observers

 Inverted Residual Block:After observer insertion

 Conv2d(
  3, 64, kernel_size=(3, 3), stride=(1, 1)
  (activation_post_process): HistogramObserver()
)
<inside se forward:>
X: tensor([[-1.5691, -0.7516, -0.7360, -0.6458]])
--------------------------
<inside se forward:>
X: tensor([[ 3.6605e-01,  3.3855e+00, -5.0032e-19, -9.0280e-19]])
Traceback (most recent call last):
  File "d:\Codes\org\python\Quantization\quantizer.py", line 266, in <module>
    quantize_test()
  File "d:\Codes\org\python\Quantization\quantizer.py", line 248, in quantize_test
    evaluate(model, dtloader, neval_batches=num_calibration_batches)
  File "d:\Codes\org\python\Quantization\quantizer.py", line 152, in evaluate
    features = model(image.unsqueeze(0))
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "d:\codes\org\python\FV\quantized_models.py", line 576, in forward
    x = self.layer1(x)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\container.py", line 100, in forward
    input = module(input)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "d:\codes\org\python\FV\quantized_models.py", line 489, in forward
    out = self.se(out)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "d:\codes\org\python\FV\quantized_models.py", line 447, in forward
    y = self.prelu_q(y)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "d:\codes\org\python\FV\quantized_models.py", line 322, in forward
    inputs = self.quantized_op.add(torch.relu(inputs), weight_min_res)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\quantized\modules\functional_modules.py", line 43, in add
    r = self.activation_post_process(r)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\nn\modules\module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\quantization\observer.py", line 833, in forward
    self.bins)
  File "C:\Users\User\Anaconda3\Lib\site-packages\torch\quantization\observer.py", line 789, in _combine_histograms
    histogram_with_output_range = torch.zeros((Nbins * downsample_rate), device=orig_hist.device)
RuntimeError: Trying to create tensor with negative dimension -4398046511104: [-4398046511104]

and this is how the SE block looks like :

class SEBlock(nn.Module):
    def __init__(self, channel, reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.mult_xy = nn.quantized.FloatFunctional()

        self.fc = nn.Sequential(
                                nn.Linear(channel, channel // reduction),
                                nn.PReLU(),
                                # nn.ReLU(),
                                nn.Linear(channel // reduction, channel),
                                nn.Sigmoid()
                                )
        self.fc1 = self.fc[0]
        self.prelu = self.fc[1]
        self.fc2 = self.fc[2]
        self.sigmoid = self.fc[3]
        self.prelu_q = PReLU_Quantized(self.prelu)

    def forward(self, x):
        print(f'<inside se forward:>')
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        # y = self.fc(y).view(b, c, 1, 1)
        y = self.fc1(y)
        print(f'X: {y}')
        y = self.prelu_q(y)
        y = self.fc2(y)
        y = self.sigmoid(y).view(b, c, 1, 1)
        print('--------------------------')
        # out = x*y 
        out = self.mult_xy.mul(x, y)
        return out

amd this is the output when I use PReLU instead of PReLU_Quantized in the SE block only (all other instance of PReLU is replaced with PReLU_Quantized in other modulels of ResNet) :

Summary
Size (MB): 89.29209
QConfig(activation=functools.partial(<class 'torch.quantization.observer.HistogramObserver'>, reduce_range=True), weight=functools.partial(<class 'torch.quantization.observer.PerChannelMinMaxObserver'>, dtype=torch.qint8, qscheme=torch.per_channel_symmetric))
Post Training Quantization Prepare: Inserting Observers

 Inverted Residual Block:After observer insertion

 Conv2d(
  3, 64, kernel_size=(3, 3), stride=(1, 1)
  (activation_post_process): HistogramObserver()
)
<inside se forward:>
X: tensor([[-1.5691, -0.7516, -0.7360, -0.6458]])
--------------------------
<inside se forward:>
X: tensor([[ 3.6605e-01,  3.3855e+00, -5.0032e-19, -9.0280e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0513, -0.0656, -0.4529,  0.0653, -0.4762, -0.6304, -1.5043, -0.9484]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8730,  1.6650, -0.5135, -0.6811, -0.0392, -0.4689, -0.1496,  0.0717]])
--------------------------
<inside se forward:>
X: tensor([[-1.8759, -0.8886, -1.3295, -0.5375,  0.7598, -0.8526, -1.9066,  0.0985,
         -0.1461, -0.5857,  0.1513, -0.3050,  0.1955, -0.8470,  0.4528,  0.9689]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6184e+00, -2.2714e-18,  2.8052e+00,  1.0378e+01,  4.6361e-05,
          1.0644e+01,  1.4302e-02,  2.6143e-02,  2.4926e-05,  6.2237e+00,
          8.8411e-05,  6.4360e+00,  3.3530e+00,  3.9302e-05,  8.1652e+00,
          8.7950e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1687e+00,  3.1469e+00, -1.1788e+01,  4.9410e-02,  1.7272e+00,
         -3.0913e+00,  1.1572e+00, -6.7104e+00,  1.1371e+01,  4.8926e+00,
         -1.3102e+00, -4.9774e+00, -4.1444e+00, -6.3367e-01, -1.5672e+00,
          4.2629e+00,  3.2491e+00, -4.6632e+00,  5.9241e-01, -2.4883e+00,
          5.2599e+00, -7.1710e+00,  4.7197e+00,  7.2724e+00, -2.3363e+00,
         -2.2564e+00,  5.4431e+00, -2.2832e-12,  1.9732e+00,  1.1682e+00,
          6.1555e+00,  6.3574e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2785e-01,  1.1057e+00,  3.1581e-07,  9.7595e-01,  9.7386e-03,
          8.4260e-07,  2.4243e-01,  2.1749e+00,  4.5704e-01,  2.9307e+00,
          3.2384e+00,  2.6099e+00,  1.7640e-01,  4.3206e-04,  9.9380e-18,
          1.3450e-11,  1.5721e-09,  2.7632e-07,  3.6721e-04,  2.1237e-07,
          1.8839e-10,  1.8423e-02,  1.8514e-13,  4.3584e+00,  1.0972e-01,
          7.5909e-03,  4.3828e-02,  2.9285e-02,  8.3840e-07, -2.6420e-19,
          3.6933e-01,  1.0561e+00]])
--------------------------
0-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.5517, -0.8007, -0.7286, -0.6478]])
--------------------------
<inside se forward:>
X: tensor([[ 5.0945e-01,  3.2514e+00, -5.2950e-19, -9.1256e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0556, -0.1015, -0.4792,  0.0956, -0.4782, -0.6346, -1.4946, -0.9745]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8254,  1.6459, -0.4613, -0.6462, -0.0376, -0.4217, -0.0865,  0.0773]])
--------------------------
<inside se forward:>
X: tensor([[-1.8807, -0.8899, -1.3275, -0.5305,  0.7527, -0.8557, -1.9068,  0.1042,
         -0.1444, -0.5798,  0.1493, -0.3055,  0.1952, -0.8383,  0.4532,  0.9664]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6193e+00, -2.2732e-18,  2.8069e+00,  1.0384e+01,  4.6389e-05,
          1.0650e+01,  1.4310e-02,  2.6159e-02,  2.4941e-05,  6.2275e+00,
          8.8464e-05,  6.4398e+00,  3.3551e+00,  3.9326e-05,  8.1701e+00,
          8.8003e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1444e+00,  3.1584e+00, -1.1794e+01,  4.9510e-02,  1.7366e+00,
         -3.0976e+00,  1.1594e+00, -6.7127e+00,  1.1380e+01,  4.9035e+00,
         -1.3231e+00, -4.9740e+00, -4.1439e+00, -6.3774e-01, -1.5777e+00,
          4.2655e+00,  3.2341e+00, -4.6753e+00,  6.1677e-01, -2.4898e+00,
          5.2556e+00, -7.1508e+00,  4.7271e+00,  7.2643e+00, -2.3301e+00,
         -2.2546e+00,  5.4412e+00, -2.2872e-12,  1.9668e+00,  1.1764e+00,
          6.1590e+00,  6.3575e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2778e-01,  1.1051e+00,  3.1564e-07,  9.7544e-01,  9.7335e-03,
          8.4216e-07,  2.4230e-01,  2.1737e+00,  4.5681e-01,  2.9292e+00,
          3.2367e+00,  2.6086e+00,  1.7631e-01,  4.3183e-04,  9.9393e-18,
          1.3443e-11,  1.5713e-09,  2.7617e-07,  3.6702e-04,  2.1226e-07,
          1.8829e-10,  1.8414e-02,  1.8504e-13,  4.3561e+00,  1.0967e-01,
          7.5869e-03,  4.3805e-02,  2.9270e-02,  8.3797e-07, -2.6259e-19,
          3.6914e-01,  1.0555e+00]])
--------------------------
1-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.6008, -0.7627, -0.7418, -0.6562]])
--------------------------
<inside se forward:>
X: tensor([[ 4.6180e-01,  3.2969e+00, -5.1091e-19, -8.5673e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0860, -0.0888, -0.4410,  0.0515, -0.4853, -0.6203, -1.4854, -0.9521]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8713,  1.6702, -0.5249, -0.6848, -0.0393, -0.4817, -0.1603,  0.0686]])
--------------------------
<inside se forward:>
X: tensor([[-1.8888, -0.8991, -1.3308, -0.5351,  0.7626, -0.8547, -1.9075,  0.1075,
         -0.1457, -0.5770,  0.1518, -0.3068,  0.2023, -0.8418,  0.4610,  0.9654]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6180e+00, -2.2720e-18,  2.8046e+00,  1.0376e+01,  4.6351e-05,
          1.0642e+01,  1.4299e-02,  2.6138e-02,  2.4921e-05,  6.2225e+00,
          8.8393e-05,  6.4347e+00,  3.3524e+00,  3.9294e-05,  8.1636e+00,
          8.7932e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1925e+00,  3.1589e+00, -1.1792e+01,  4.9472e-02,  1.7246e+00,
         -3.0884e+00,  1.1586e+00, -6.7112e+00,  1.1375e+01,  4.8954e+00,
         -1.3047e+00, -4.9715e+00, -4.1392e+00, -6.4653e-01, -1.5772e+00,
          4.2795e+00,  3.2537e+00, -4.6607e+00,  5.9939e-01, -2.4853e+00,
          5.2615e+00, -7.1921e+00,  4.7311e+00,  7.2626e+00, -2.3221e+00,
         -2.2574e+00,  5.4390e+00, -2.2799e-12,  1.9636e+00,  1.1820e+00,
          6.1593e+00,  6.3554e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2775e-01,  1.1048e+00,  3.1557e-07,  9.7521e-01,  9.7312e-03,
          8.4196e-07,  2.4225e-01,  2.1732e+00,  4.5670e-01,  2.9285e+00,
          3.2360e+00,  2.6079e+00,  1.7627e-01,  4.3173e-04,  9.9377e-18,
          1.3440e-11,  1.5710e-09,  2.7611e-07,  3.6693e-04,  2.1221e-07,
          1.8825e-10,  1.8409e-02,  1.8500e-13,  4.3551e+00,  1.0964e-01,
          7.5851e-03,  4.3795e-02,  2.9263e-02,  8.3777e-07, -2.6075e-19,
          3.6905e-01,  1.0553e+00]])
--------------------------
2-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.5790, -0.8100, -0.7292, -0.6440]])
--------------------------
<inside se forward:>
X: tensor([[ 5.0116e-01,  3.2659e+00, -5.2126e-19, -8.5920e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0427, -0.0929, -0.4953,  0.0674, -0.4784, -0.6115, -1.4972, -0.9645]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8374,  1.6551, -0.4788, -0.6555, -0.0380, -0.4393, -0.1045,  0.0742]])
--------------------------
<inside se forward:>
X: tensor([[-1.8727, -0.8932, -1.3280, -0.5371,  0.7591, -0.8533, -1.8998,  0.1003,
         -0.1452, -0.5813,  0.1475, -0.3055,  0.2016, -0.8411,  0.4535,  0.9559]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6189e+00, -2.2717e-18,  2.8060e+00,  1.0381e+01,  4.6375e-05,
          1.0647e+01,  1.4306e-02,  2.6151e-02,  2.4933e-05,  6.2256e+00,
          8.8438e-05,  6.4379e+00,  3.3541e+00,  3.9314e-05,  8.1676e+00,
          8.7976e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1427e+00,  3.1480e+00, -1.1763e+01,  4.9449e-02,  1.7342e+00,
         -3.0890e+00,  1.1581e+00, -6.7127e+00,  1.1348e+01,  4.8951e+00,
         -1.3154e+00, -4.9691e+00, -4.1414e+00, -6.4151e-01, -1.5783e+00,
          4.2688e+00,  3.2439e+00, -4.6649e+00,  6.0231e-01, -2.4855e+00,
          5.2647e+00, -7.1494e+00,  4.7290e+00,  7.2520e+00, -2.3288e+00,
         -2.2466e+00,  5.4410e+00, -2.2847e-12,  1.9777e+00,  1.1817e+00,
          6.1588e+00,  6.3552e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2778e-01,  1.1050e+00,  3.1563e-07,  9.7541e-01,  9.7331e-03,
          8.4213e-07,  2.4229e-01,  2.1736e+00,  4.5679e-01,  2.9291e+00,
          3.2366e+00,  2.6084e+00,  1.7631e-01,  4.3181e-04,  9.9368e-18,
          1.3443e-11,  1.5713e-09,  2.7616e-07,  3.6700e-04,  2.1225e-07,
          1.8828e-10,  1.8413e-02,  1.8503e-13,  4.3559e+00,  1.0966e-01,
          7.5866e-03,  4.3804e-02,  2.9269e-02,  8.3793e-07, -2.6231e-19,
          3.6912e-01,  1.0555e+00]])
--------------------------
3-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.6226, -0.7605, -0.6854, -0.5836]])
--------------------------
<inside se forward:>
X: tensor([[ 2.6039e-01,  3.4835e+00, -4.8167e-19, -8.5980e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0699, -0.0526, -0.4319, -0.0069, -0.4890, -0.6087, -1.4835, -0.9184]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8828,  1.6724, -0.5539, -0.7054, -0.0402, -0.5061, -0.2002,  0.0661]])
--------------------------
<inside se forward:>
X: tensor([[-1.8790, -0.8969, -1.3365, -0.5384,  0.7664, -0.8571, -1.9043,  0.1059,
         -0.1459, -0.5847,  0.1542, -0.3094,  0.2076, -0.8439,  0.4567,  0.9642]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6174e+00, -2.2710e-18,  2.8035e+00,  1.0371e+01,  4.6333e-05,
          1.0638e+01,  1.4293e-02,  2.6128e-02,  2.4911e-05,  6.2200e+00,
          8.8358e-05,  6.4321e+00,  3.3510e+00,  3.9279e-05,  8.1603e+00,
          8.7897e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1583e+00,  3.1523e+00, -1.1765e+01,  4.9511e-02,  1.7292e+00,
         -3.0851e+00,  1.1595e+00, -6.7154e+00,  1.1350e+01,  4.9005e+00,
         -1.3040e+00, -4.9675e+00, -4.1433e+00, -6.3643e-01, -1.5745e+00,
          4.2669e+00,  3.2492e+00, -4.6569e+00,  6.0002e-01, -2.4789e+00,
          5.2519e+00, -7.1619e+00,  4.7275e+00,  7.2465e+00, -2.3229e+00,
         -2.2525e+00,  5.4448e+00, -2.2806e-12,  1.9732e+00,  1.1739e+00,
          6.1550e+00,  6.3576e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2778e-01,  1.1050e+00,  3.1563e-07,  9.7540e-01,  9.7331e-03,
          8.4212e-07,  2.4229e-01,  2.1736e+00,  4.5679e-01,  2.9291e+00,
          3.2366e+00,  2.6084e+00,  1.7630e-01,  4.3181e-04,  9.9369e-18,
          1.3443e-11,  1.5712e-09,  2.7616e-07,  3.6700e-04,  2.1225e-07,
          1.8828e-10,  1.8413e-02,  1.8503e-13,  4.3559e+00,  1.0966e-01,
          7.5866e-03,  4.3803e-02,  2.9269e-02,  8.3793e-07, -2.6177e-19,
          3.6912e-01,  1.0555e+00]])
--------------------------
4-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.5559, -0.7016, -0.7545, -0.6793]])
--------------------------
<inside se forward:>
X: tensor([[ 4.6992e-01,  3.2951e+00, -5.1868e-19, -8.9299e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0106, -0.0831, -0.5151,  0.0650, -0.4869, -0.6094, -1.5116, -0.9355]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8588,  1.6723, -0.4774, -0.6520, -0.0379, -0.4428, -0.0917,  0.0721]])
--------------------------
<inside se forward:>
X: tensor([[-1.8655, -0.8893, -1.3313, -0.5367,  0.7590, -0.8533, -1.9023,  0.1008,
         -0.1428, -0.5834,  0.1448, -0.3016,  0.2040, -0.8361,  0.4534,  0.9494]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6194e+00, -2.2728e-18,  2.8070e+00,  1.0384e+01,  4.6391e-05,
          1.0651e+01,  1.4311e-02,  2.6160e-02,  2.4942e-05,  6.2277e+00,
          8.8468e-05,  6.4401e+00,  3.3552e+00,  3.9328e-05,  8.1704e+00,
          8.8006e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1170e+00,  3.1500e+00, -1.1769e+01,  4.9446e-02,  1.7362e+00,
         -3.0951e+00,  1.1581e+00, -6.7183e+00,  1.1354e+01,  4.8964e+00,
         -1.3110e+00, -4.9689e+00, -4.1461e+00, -6.4890e-01, -1.5875e+00,
          4.2782e+00,  3.2361e+00, -4.6685e+00,  6.0150e-01, -2.4799e+00,
          5.2726e+00, -7.1287e+00,  4.7384e+00,  7.2532e+00, -2.3235e+00,
         -2.2367e+00,  5.4463e+00, -2.2915e-12,  1.9780e+00,  1.1893e+00,
          6.1668e+00,  6.3629e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2774e-01,  1.1047e+00,  3.1554e-07,  9.7513e-01,  9.7304e-03,
          8.4189e-07,  2.4223e-01,  2.1730e+00,  4.5666e-01,  2.9283e+00,
          3.2357e+00,  2.6077e+00,  1.7626e-01,  4.3169e-04,  9.9353e-18,
          1.3439e-11,  1.5708e-09,  2.7609e-07,  3.6690e-04,  2.1219e-07,
          1.8823e-10,  1.8408e-02,  1.8498e-13,  4.3547e+00,  1.0963e-01,
          7.5845e-03,  4.3792e-02,  2.9261e-02,  8.3770e-07, -2.6081e-19,
          3.6902e-01,  1.0552e+00]])
--------------------------
5-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.5922, -0.7833, -0.8099, -0.7581]])
--------------------------
<inside se forward:>
X: tensor([[ 6.0425e-01,  3.1537e+00, -5.2917e-19, -8.2412e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0295, -0.1079, -0.5239,  0.1099, -0.4906, -0.6187, -1.5178, -0.9515]])
--------------------------
<inside se forward:>
X: tensor([[ 4.9047,  1.7059, -0.4654, -0.6338, -0.0371, -0.4419, -0.0531,  0.0689]])
--------------------------
<inside se forward:>
X: tensor([[-1.8792, -0.8972, -1.3274, -0.5352,  0.7649, -0.8542, -1.9078,  0.1055,
         -0.1455, -0.5737,  0.1437, -0.3026,  0.2050, -0.8408,  0.4609,  0.9527]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6192e+00, -2.2734e-18,  2.8065e+00,  1.0383e+01,  4.6383e-05,
          1.0649e+01,  1.4309e-02,  2.6156e-02,  2.4938e-05,  6.2268e+00,
          8.8454e-05,  6.4391e+00,  3.3547e+00,  3.9321e-05,  8.1692e+00,
          8.7993e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1462e+00,  3.1594e+00, -1.1777e+01,  4.9445e-02,  1.7250e+00,
         -3.0903e+00,  1.1580e+00, -6.6971e+00,  1.1362e+01,  4.8978e+00,
         -1.3202e+00, -4.9701e+00, -4.1377e+00, -6.3982e-01, -1.5717e+00,
          4.2688e+00,  3.2314e+00, -4.6666e+00,  6.1283e-01, -2.4762e+00,
          5.2739e+00, -7.1517e+00,  4.7211e+00,  7.2673e+00, -2.3338e+00,
         -2.2474e+00,  5.4291e+00, -2.2837e-12,  1.9676e+00,  1.1787e+00,
          6.1559e+00,  6.3495e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2772e-01,  1.1046e+00,  3.1549e-07,  9.7498e-01,  9.7289e-03,
          8.4176e-07,  2.4219e-01,  2.1727e+00,  4.5659e-01,  2.9278e+00,
          3.2352e+00,  2.6073e+00,  1.7623e-01,  4.3163e-04,  9.9370e-18,
          1.3437e-11,  1.5706e-09,  2.7604e-07,  3.6684e-04,  2.1216e-07,
          1.8820e-10,  1.8405e-02,  1.8495e-13,  4.3541e+00,  1.0962e-01,
          7.5833e-03,  4.3785e-02,  2.9256e-02,  8.3757e-07, -2.6052e-19,
          3.6896e-01,  1.0550e+00]])
--------------------------
6-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.5156, -0.5839, -0.7718, -0.6881]])
--------------------------
<inside se forward:>
X: tensor([[ 6.3789e-01,  3.1470e+00, -5.4607e-19, -8.8140e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0068, -0.1239, -0.5419,  0.1311, -0.4739, -0.6220, -1.5159, -1.0039]])
--------------------------
<inside se forward:>
X: tensor([[ 4.7764,  1.6289, -0.3860, -0.5940, -0.0352, -0.3554,  0.0103,  0.0848]])
--------------------------
<inside se forward:>
X: tensor([[-1.8759, -0.8883, -1.3219, -0.5339,  0.7527, -0.8555, -1.9051,  0.0963,
         -0.1418, -0.5765,  0.1501, -0.2970,  0.1911, -0.8370,  0.4527,  0.9548]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6203e+00, -2.2739e-18,  2.8086e+00,  1.0390e+01,  4.6417e-05,
          1.0657e+01,  1.4319e-02,  2.6175e-02,  2.4956e-05,  6.2312e+00,
          8.8518e-05,  6.4437e+00,  3.3571e+00,  3.9350e-05,  8.1750e+00,
          8.8056e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1541e+00,  3.1531e+00, -1.1772e+01,  4.9404e-02,  1.7326e+00,
         -3.0931e+00,  1.1571e+00, -6.6943e+00,  1.1357e+01,  4.8937e+00,
         -1.3274e+00, -4.9758e+00, -4.1305e+00, -6.4647e-01, -1.5764e+00,
          4.2726e+00,  3.2396e+00, -4.6719e+00,  6.0704e-01, -2.4865e+00,
          5.2721e+00, -7.1595e+00,  4.7218e+00,  7.2695e+00, -2.3445e+00,
         -2.2482e+00,  5.4221e+00, -2.2827e-12,  1.9751e+00,  1.1886e+00,
          6.1566e+00,  6.3400e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2782e-01,  1.1054e+00,  3.1574e-07,  9.7576e-01,  9.7366e-03,
          8.4243e-07,  2.4238e-01,  2.1744e+00,  4.5695e-01,  2.9301e+00,
          3.2378e+00,  2.6094e+00,  1.7637e-01,  4.3197e-04,  9.9450e-18,
          1.3448e-11,  1.5718e-09,  2.7626e-07,  3.6714e-04,  2.1232e-07,
          1.8835e-10,  1.8419e-02,  1.8510e-13,  4.3575e+00,  1.0970e-01,
          7.5893e-03,  4.3819e-02,  2.9279e-02,  8.3823e-07, -2.6201e-19,
          3.6925e-01,  1.0558e+00]])
--------------------------
7-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.5567, -0.7524, -0.7620, -0.6805]])
--------------------------
<inside se forward:>
X: tensor([[ 5.3279e-01,  3.2445e+00, -5.2411e-19, -8.5973e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0248, -0.1011, -0.5172,  0.0823, -0.4737, -0.6192, -1.4961, -0.9762]])
--------------------------
<inside se forward:>
X: tensor([[ 4.8410,  1.6705, -0.4254, -0.6104, -0.0360, -0.4001, -0.0183,  0.0759]])
--------------------------
<inside se forward:>
X: tensor([[-1.8740, -0.8943, -1.3243, -0.5337,  0.7550, -0.8610, -1.9063,  0.1108,
         -0.1408, -0.5770,  0.1506, -0.3089,  0.1984, -0.8347,  0.4544,  0.9591]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6191e+00, -2.2732e-18,  2.8065e+00,  1.0383e+01,  4.6383e-05,
          1.0649e+01,  1.4309e-02,  2.6156e-02,  2.4938e-05,  6.2267e+00,
          8.8453e-05,  6.4390e+00,  3.3546e+00,  3.9321e-05,  8.1691e+00,
          8.7992e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1553e+00,  3.1582e+00, -1.1776e+01,  4.9516e-02,  1.7335e+00,
         -3.0909e+00,  1.1595e+00, -6.7080e+00,  1.1362e+01,  4.9002e+00,
         -1.3237e+00, -4.9679e+00, -4.1376e+00, -6.4026e-01, -1.5758e+00,
          4.2652e+00,  3.2360e+00, -4.6691e+00,  6.1957e-01, -2.4899e+00,
          5.2536e+00, -7.1605e+00,  4.7257e+00,  7.2488e+00, -2.3271e+00,
         -2.2548e+00,  5.4335e+00, -2.2811e-12,  1.9611e+00,  1.1809e+00,
          6.1551e+00,  6.3494e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2783e-01,  1.1055e+00,  3.1575e-07,  9.7577e-01,  9.7367e-03,
          8.4244e-07,  2.4238e-01,  2.1744e+00,  4.5696e-01,  2.9302e+00,
          3.2378e+00,  2.6094e+00,  1.7637e-01,  4.3197e-04,  9.9456e-18,
          1.3448e-11,  1.5718e-09,  2.7626e-07,  3.6714e-04,  2.1233e-07,
          1.8835e-10,  1.8420e-02,  1.8510e-13,  4.3576e+00,  1.0970e-01,
          7.5894e-03,  4.3820e-02,  2.9280e-02,  8.3824e-07, -2.6233e-19,
          3.6926e-01,  1.0559e+00]])
--------------------------
8-feature dims: torch.Size([1, 512])
<inside se forward:>
X: tensor([[-1.6060, -0.9100, -0.7711, -0.7195]])
--------------------------
<inside se forward:>
X: tensor([[ 5.6481e-01,  3.2033e+00, -5.2471e-19, -8.0308e-19]])
--------------------------
<inside se forward:>
X: tensor([[-1.0948, -0.1106, -0.4654,  0.0768, -0.5028, -0.6202, -1.4778, -0.9581]])
--------------------------
<inside se forward:>
X: tensor([[ 4.9064,  1.6963, -0.5052, -0.6644, -0.0385, -0.4721, -0.1160,  0.0672]])
--------------------------
<inside se forward:>
X: tensor([[-1.8868, -0.8981, -1.3322, -0.5298,  0.7566, -0.8556, -1.9039,  0.1134,
         -0.1447, -0.5744,  0.1480, -0.3113,  0.2017, -0.8359,  0.4564,  0.9658]])
--------------------------
<inside se forward:>
X: tensor([[ 1.6177e+00, -2.2718e-18,  2.8040e+00,  1.0373e+01,  4.6342e-05,
          1.0640e+01,  1.4296e-02,  2.6133e-02,  2.4916e-05,  6.2212e+00,
          8.8375e-05,  6.4333e+00,  3.3517e+00,  3.9286e-05,  8.1619e+00,
          8.7914e-07]])
--------------------------
<inside se forward:>
X: tensor([[ 9.1471e+00,  3.1531e+00, -1.1779e+01,  4.9447e-02,  1.7370e+00,
         -3.0912e+00,  1.1580e+00, -6.7101e+00,  1.1363e+01,  4.9010e+00,
         -1.3083e+00, -4.9699e+00, -4.1370e+00, -6.3986e-01, -1.5794e+00,
          4.2680e+00,  3.2415e+00, -4.6646e+00,  6.0562e-01, -2.4862e+00,
          5.2591e+00, -7.1519e+00,  4.7275e+00,  7.2529e+00, -2.3203e+00,
         -2.2537e+00,  5.4380e+00, -2.2843e-12,  1.9685e+00,  1.1793e+00,
          6.1543e+00,  6.3497e+00]])
--------------------------
<inside se forward:>
X: tensor([[ 1.2776e-01,  1.1049e+00,  3.1558e-07,  9.7525e-01,  9.7316e-03,
          8.4199e-07,  2.4226e-01,  2.1733e+00,  4.5672e-01,  2.9286e+00,
          3.2361e+00,  2.6080e+00,  1.7628e-01,  4.3175e-04,  9.9388e-18,
          1.3441e-11,  1.5710e-09,  2.7612e-07,  3.6695e-04,  2.1221e-07,
          1.8825e-10,  1.8410e-02,  1.8500e-13,  4.3553e+00,  1.0965e-01,
          7.5854e-03,  4.3797e-02,  2.9264e-02,  8.3780e-07, -2.6109e-19,
          3.6906e-01,  1.0553e+00]])
--------------------------
9-feature dims: torch.Size([1, 512])
Post Training Quantization: Calibration done
C:\Users\User\Anaconda3\Lib\site-packages\torch\quantization\observer.py:845: UserWarning: must run observer before calling calculate_qparams.
     Returning default scale and zero point
  Returning default scale and zero point "
Post Training Quantization: Convert done

 Inverted Residual Block: After fusion and quantization, note fused modules:

 QuantizedConv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.011990774422883987, zero_point=80)
Size of model after quantization
Size (MB): 24.397458