Combining Trained Models in PyTorch

Hi ptrblck,
My current code (as I posted) still works and gives me some results. But, I am still not sure is it correct?
Sorry, I will post again

optimizer = th.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
model.train()
train_losses,val_losses,train_accs,val_accs = [],[],[],[]
early_stopping = EarlyStopping(patience=patience, verbose=True)
for epoch in range(n_epochs):
train_loader = DataLoader(traindata_list, batch_size=batchsize, shuffle=True, num_workers=5)
test_loader = DataLoader(testdata_list, batch_size=batchsize,
shuffle=True, num_workers=5)
avg_loss,avg_acc = [],[]
batch_idx = 0
tqdm_train_loader = tqdm(train_loader)
for Batch_data in tqdm_train_loader:
Batch_data.to(device)
out_labels = model(Batch_data)
loss = F.nll_loss(out_labels, Batch_data.y)
optimizer.zero_grad()
loss.backward()
avg_loss.append(loss.item())
optimizer.step()
_, pred = out_labels.max(dim=-1)