I want to concatenate two layers of convolution
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.cnn1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3,stride=1, padding=1)
self.batchnorm1 = nn.BatchNorm2d(32)
self.cnn2 = nn.Conv2d(in_channels=32, out_channels=16, kernel_size=5, stride=1, padding=2)
self.batchnorm2 = nn.BatchNorm2d(16)
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.cnn3 = nn.Conv3d(in_channels=16, out_channels=64, kernel_size=3, stride=1, padding=2)
self.relu = nn.ReLU()
self.maxpool3 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(in_features=6451, out_features=800)
#self.droput = nn.Dropout(p=0.1)
self.fc2 = nn.Linear(in_features=800, out_features=9)
#self.droput = nn.Dropout(p=0.1)
self.fc3 = nn.Linear(in_features=9, out_features=2)
def forward(self,x):
out = self.cnn1(x)
out = self.batchnorm1(out)
out1 = self.cnn2(out)
out1 = self.batchnorm2(out1)
combined = torch.cat((out,out1),1)
out = out.view(combined.size(0),-1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
out = self.relu(out)
return out
RuntimeError: mat1 and mat2 shapes cannot be multiplied (6451x800 and 6451x800)
I want to do conv1(3.3) → conv2(1,1)-> concat two layers->pooling->conv->pooling->FC->softmax
help me pleaase