Could not run 'quantized::conv2d.new' with arguments from the 'QuantizedCUDA' backend

Hi @jerryzh168!
The error I have is NotImplementedError: Could not run 'quantized::conv2d.new' with arguments from the 'CPU' backend

The inference is done on the following input:
dummy_input = torch.rand((1, 3, 512, 512), dtype=torch.float32, device="cpu")

The modified model for quantization is:

# Define the Model
class ResNet(nn.Module):
    def __init__(self, config, output_dim):
        super().__init__()

        # QuantStub converts tensors from floating point to quantized
        # self.quant = torch.quantization.QuantStub()

        block, n_blocks, channels = config
        self.in_channels = channels[0]

        assert len(n_blocks) == len(channels) == 4

        self.conv1 = nn.Conv2d(
            3,
            self.in_channels,
            kernel_size=(7, 7),
            stride=(2, 2),
            padding=3,
            bias=False,
        )
        self.bn1 = nn.BatchNorm2d(self.in_channels)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self.get_resnet_layer(block, n_blocks[0], channels[0])
        self.layer2 = self.get_resnet_layer(block, n_blocks[1], channels[1], stride=2)
        self.layer3 = self.get_resnet_layer(block, n_blocks[2], channels[2], stride=2)
        self.layer4 = self.get_resnet_layer(block, n_blocks[3], channels[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(self.in_channels, output_dim)

        # DeQuantStub converts tensors from quantized to floating point
        # self.dequant = torch.quantization.DeQuantStub()




    def get_resnet_layer(self, block, n_blocks, channels, stride=1):

        layers = []

        if self.in_channels != block.expansion * channels:
            downsample = True
        else:
            downsample = False

        layers.append(block(self.in_channels, channels, stride, downsample))

        for i in range(1, n_blocks):
            layers.append(block(block.expansion * channels, channels))

        self.in_channels = block.expansion * channels

        return nn.Sequential(*layers)

    def forward(self, x):
        # manually specify where tensors will be converted from floating
        # point to quantized in the quantized model
        # x = self.quant(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)

        h = x.view(x.shape[0], -1)

        x = self.fc(h)
        # manually specify where tensors will be converted from quantized
        # to floating point in the quantized model
        # x = self.dequant(x)

        return x, h


class BasicBlock(nn.Module):

    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1, downsample=False):
        super().__init__()
        # QuantStub converts tensors from floating point to quantized
        self.quant = torch.quantization.QuantStub()

        self.conv1 = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False,
        )
        self.bn1 = nn.BatchNorm2d(out_channels)

        self.conv2 = nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.relu = nn.ReLU(inplace=True)


        if downsample:
            conv = nn.Conv2d(
                in_channels, out_channels, kernel_size=1, stride=stride, bias=False
            )
            bn = nn.BatchNorm2d(out_channels)
            downsample = nn.Sequential(conv, bn)
        else:
            downsample = None

        self.downsample = downsample
        # DeQuantStub converts tensors from quantized to floating point
        self.dequant = torch.quantization.DeQuantStub()

    def forward(self, x):
        # manually specify where tensors will be converted from floating
        # point to quantized in the quantized model
        x = self.quant(x)

        i = x

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)

        if self.downsample is not None:
            i = self.quant(i)
            i = self.downsample(i)
            i = self.dequant(i)

        x += i
        x = self.relu(x)
        # manually specify where tensors will be converted from quantized
        # to floating point in the quantized model
        x = self.dequant(x)
        return x


ResNetConfig = namedtuple("ResNetConfig", ["block", "n_blocks", "channels"])

resnet18_config = ResNetConfig(
    block=BasicBlock, n_blocks=[2, 2, 2, 2], channels=[64, 128, 256, 512]
)

About the qconfig settings:

backend = "fbgemm"  # x86 machine
torch.backends.quantized.engine = backend
model_q.qconfig = torch.quantization.get_default_qconfig(backend)

Depending on where I place QuantStub, DeQuantStub, I obtain this error or the one mentioned above.
this error

Thanks a lot for your help :slight_smile:
Please let me know if you need any additional inputs

1 Like