Cuda.is_available() return False on Docker image(WSL2)

Hi !
I build docker image from PyTorch image 2.2.1-cuda12.1-cudnn8-devel in WSL2
And I’ve already installed NVIDIA Container Toolkit and restart the Docker.

I can run nvidia-smi inside Docker container.

But when I run in container:
torch.cuda.is_available() it return False
torch.backends.cudnn.enabled it return True
I also try 2.0.1-cuda11.7-cudnn8-devel
it still have same problem

However, I try Pytorch image latest. there is no problem,
torch.cuda.is_available() and torch.backends.cudnn.enabled both return True.

> nvidia-smi

Fri Mar 22 11:04:15 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.40.07              Driver Version: 551.52         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        On  |   00000000:01:00.0  On |                    0 |
|  0%   47C    P8             13W /  450W |     719MiB /  23028MiB |      3%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A        24      G   /Xwayland                                   N/A      |
|    0   N/A  N/A        35      G   /Xwayland                                   N/A      |
|    0   N/A  N/A       109      G   /Xwayland                                   N/A      |
+-----------------------------------------------------------------------------------------+

> nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Jun__8_16:49:14_PDT_2022
Cuda compilation tools, release 11.7, V11.7.99
Build cuda_11.7.r11.7/compiler.31442593_0

I have no idea which part went wrong.
Can anyone help me?