CUDA out of memory after a few twists

I’m trying to train my model, but this error shows up.

RuntimeError: CUDA out of memory. Tried to allocate 1.14 GiB (GPU 1; 31.75 GiB total capacity; 3.73 GiB already allocated; 1.10 GiB free; 6.38 GiB reserved in total by PyTorch)

I tried to use loss += float(loss.item()) as the original document states here, but it didn’t work. The same error still shows up.

I also tried to decrease the batch size to 5, which I would like to take this number as the smallest and should not decrease to a smaller size.

This is my training/validation code, can someone comment on how to solve the issue. Many thanks!

def train(data_loader, model, optimizer, scheduler, total_epochs, save_interval, save_folder, sets):
    # settings
    batches_per_epoch = len(data_loader)
    log.info('{} epochs in total, {} batches per epoch'.format(total_epochs, batches_per_epoch))
    loss_f = nn.CrossEntropyLoss() #ignore_index=-1

    print("Current setting is:")
    print(sets)
    print("\n\n")     
    if not sets.no_cuda:
        loss_f = loss_f.cuda()
    
    val_losses = []
    val_acc = []
    train_loss = []
    train_acc = []
    total_step = sets.batch_size
    
    #model.train()
    train_time_sp = time.time()
    for epoch in range(total_epochs):
        log.info('Start epoch {}'.format(epoch+1))

        running_loss = 0.0
        correct = 0
        total = 0
        
        batch_loss = 0
        total_t = 0
        correct_t = 0
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()
                
            elif phase == 'val':
                print('Starting Validation: ')
                           
            z=0

            for batch_id, batch_data in enumerate(data_loaders[phase]):
                # getting data batch 
                z+=1
                batch_id_sp = epoch * batches_per_epoch
                volumes, labels = batch_data
                
                if not sets.no_cuda: 
                    volumes = volumes.cuda()

                if phase == 'train':
                    optimizer.zero_grad() 
                    
                    
                    output = model(volumes)

                    loss = loss_f(output, labels)
                    
                    loss.backward()
                    optimizer.step()

                    avg_batch_time = (time.time() - train_time_sp) / (1 + batch_id_sp)
                    
                    running_loss += loss.item()
                    _,pred = torch.max(output, dim=1)
                    correct += torch.sum(pred==labels).item()
                    total += output.size(0)
                              
                elif phase == 'val':
                    with torch.zero_grad():
                        model.eval()

                        output_t = model(volumes)

                        labels_t = torch.argmax(labels, dim=1).cuda()

                        val_loss = loss_f(output_t, labels_t)
                        batch_loss += val_oss.item()
                        _,pred_t = torch.max(output_t, dim=1)
                        correct_t += torch.sum(pred_t==labels_t).item()
                        total_t += target.size(0)
                    
                if False:
                    log.info(
                            '{} ||  Batch: {}-{} ({}), loss = {:.3f}, avg_batch_time = {:.3f}'\
                            .format(z, epoch, batch_id, batch_id_sp, loss.item(), avg_batch_time))

                if True:
                    # save model
                    if batch_id ==batches_per_epoch-1 and epoch % 1  == 0:
                        model_save_path = '{}/trail1_{}.pth.tar'.format(save_folder, epoch)
                        model_save_dir = os.path.dirname(model_save_path)
                        if not os.path.exists(model_save_dir):
                            os.makedirs(model_save_dir)

                        log.info('Save checkpoints: epoch = {}, batch_id = {}'.format(epoch, batch_id)) 
                        torch.save({
                                    'epoch': epoch,
                                    'batch_id': batch_id,
                                    'state_dict': model.state_dict(),
                                    'optimizer': optimizer.state_dict()},
                                    model_save_path)

            train_acc.append(100*correct / total)
            train_loss.append(running_loss / total_step)
            val_acc.append(100*correct_t / total_t)
            val_loss.append(batch_loss / total_step)
        print(f"[{epcoh+1}] Train loss: {np.mean(train_loss):.3f}, Train acc: {(100*correct / total):.3f}")
        print(f"Validation loss: {np.mean(val_loss):.3f}, Validation acc: {(100*correct_t / total_t):.3f}")
        torch.cuda.empty_cache()
                
    print('Finished training')      

You could try loss += loss.item().cpu()