Custom weight initialization

sorry for my stupid question,
but i get this error:

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3,3, 3)
        K = torch.Tensor([[1 ,0, -1],[2, 0 ,-2], [1, 0 ,-1]])
#        I think I should make the shape/size like this?
        K = torch.unsqueeze(torch.unsqueeze(K,0),0)
        with torch.no_grad():
            self.conv1.weight = K
        
    def forward(self, x):
        x = self.conv1(x)
        return x
    
    


net = Net()
net(rand(4,3,10,10))

TypeError: cannot assign 'torch.FloatTensor' as parameter 'weight' (torch.nn.Parameter or None expected)
1 Like