DataParallel raises infinite freezing with A100 gpus

I am trying to run DDP or DP with two A100 gpus on server, but whenever the machine accesses the computed loss, the process freezes infinitely. I have to exit the process with ctrl+z and manually kill the process.
I made a simple script which trains resnet18 on CIFAR-10, with or without DP.
The script runs smoothly when DP is disabled. (on both A100 and non-A100 GPUs)
Additionally, the same script runs fine on other servers with 3090 GPUs.
The problem happens when DP is enabled and trained on A100 GPUs.
Therefore, I think that pytorch’s DP or DDP does not work with A100 GPU.

Here is my server spec:
OS: Ubuntu 20.04 Server (updated to the latest)
CPU: Intel Xeon Gold 6226R x2
RAM: 256GB
GPUs: A100 x2

And this is software spec:
anaconda: 4.12.0
pytorch: 1.12 + cuda 11.6
cuda: 11.6
cudnn: 8.4.1

# https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py
import torch
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torchvision.models import resnet18, ResNet18_Weights
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

import matplotlib.pyplot as plt
import numpy as np

from tqdm import tqdm

DP = True
#DP = False

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

batch_size = 4
num_workers = 4

cudnn.benchmark = True
torch.backends.cudnn.enabled = True

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                                          shuffle=True, num_workers=num_workers,
                                          pin_memory=True)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                         shuffle=False, num_workers=num_workers)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

class ResNetWrapper(nn.Module):
    def __init__(self):
        super().__init__()
        self.resnet = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
        self.loss = nn.CrossEntropyLoss()
    def forward(self, x, gt=None):
        output = self.resnet(x)

        if gt is not None:
            return self.loss(output, gt)
        return output


print('Initializing Model')
#net = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
net = ResNetWrapper()

if DP:
    net = torch.nn.DataParallel(net).cuda()
else:
    net = net.cuda()

#criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
optimizer = optim.Adam(net.parameters(), lr=0.001)

print("Start Training")
first_iteration = True
for epoch in range(2):  # loop over the dataset multiple times
    running_loss = 0.0
    pbar = tqdm(total=len(trainloader))
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        if not DP:
            inputs = inputs.cuda()
            labels = labels.cuda()

        if first_iteration:
            print("passing data to device")

        # zero the parameter gradients
        optimizer.zero_grad()

        if first_iteration:
            print("forwarding input")

        # forward + backward + optimize

        loss = net(inputs, labels)
        loss = loss.sum()

        if first_iteration:
            print("backwarding loss")
        loss.backward()

        if first_iteration:
            print("updating with optimizer")
            first_iteration = False
        optimizer.step()
        """
        # print statistics
        loss_val = loss.detach().cpu().item()
        running_loss += loss_val
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0
        """
        pbar.update(1)
    pbar.close()

print('Finished Training')

########################################################################
# Let's quickly save our trained model:

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

net = ResNetWrapper()
net.load_state_dict(torch.load(PATH))

correct = 0
total = 0
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
    for data in testloader:
        images, labels = data
        # calculate outputs by running images through the network
        outputs = net(images)
        # the class with the highest energy is what we choose as prediction
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        for label, prediction in zip(labels, predictions):
            if label == prediction:
                correct_pred[classes[label]] += 1
            total_pred[classes[label]] += 1

print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
# print accuracy for each class
for classname, correct_count in correct_pred.items():
    accuracy = 100 * float(correct_count) / total_pred[classname]
    print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')

# %%%%%%INVISIBLE_CODE_BLOCK%%%%%%
del dataiter

Check if IOMMU is enabled and disable it to avoid hangs.

Thanks. I set ‘Intel Virtualization Technology’ disabled in BIOS, and the problem is solved.