Hi,
I would like to change the backbone of Mask R-NN from Resnet to DenseNet. I have followed the tutorial but I am not sure if I should freeze batch normalization. I am not using fpn.
Please help!
backbone= torchvision.models.densenet121(pretrained= True).features
backbone.out_channels =1024
for name, param in backbone.named_parameters():
if 'norm' in name:
param.requires_grad = False
anchor_generator = AnchorGenerator(sizes=((8, 16, 32, 128, 256),),
aspect_ratios=((0.25, 0.5, 1.0, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
output_size=7,
sampling_ratio=2)
mask_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
output_size=14,
sampling_ratio=2)
model = MaskRCNN(backbone, num_classes, rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler, mask_roi_pool = mask_pooler)