You could use filter
to get the base and “special” parameters:
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3, 1, 1)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 12, 3, 1, 1)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(12*56*56, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = MyModel()
my_list = ['fc1.weight', 'fc1.bias']
params = list(filter(lambda kv: kv[0] in my_list, model.named_parameters()))
base_params = list(filter(lambda kv: kv[0] not in my_list, model.named_parameters()))
Depending on your model definition (custom vs. nn.Sequential
etc.) some other code snippets might be prettier. Let me know, if that works for you.