for cat in sem_class_to_idx.keys():
if cat == '__background__':
continue
car_category = sem_class_to_idx[cat]
car_mask = output[0, :, :, :].argmax(axis=0).detach().cpu().numpy()
car_mask_uint8 = 255 * np.uint8(car_mask == car_category)
car_mask_float = np.float32(car_mask == car_category)
target_layer = [layer]
targets = [SemanticSegmentationTarget(car_category, car_mask_float)]
with GradCAM(model=Attention_UNet(),
target_layers=target_layer,
# use_cuda=torch.cuda.is_available()
reshape_transform=True
# use_cuda = False
) as cam:
grayscale_cam = cam(input_tensor=input_tensor.transpose(-1,-3),
targets=targets)[0, :]
cam_image = show_cam_on_image( np.repeat([min_max_preprocess(img)], 3, axis=0).transpose(1,2,0), grayscale_cam, use_rgb=True)
list_img.append(cam_image)
I got error: RuntimeError Traceback (most recent call last)
in <cell line: 18>()
43 ) as cam:
44
—> 45 grayscale_cam = cam(input_tensor=input_tensor.transpose(-1,-3),
46 targets=targets)[0, :]
47 cam_image = show_cam_on_image( np.repeat([min_max_preprocess(img)], 3, axis=0).transpose(1,2,0), grayscale_cam, use_rgb=True)
/usr/local/lib/python3.10/dist-packages/mamba_ssm/ops/selective_scan_interface.py in forward(ctx, u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
40 C = rearrange(C, “b dstate l → b 1 dstate l”)
41 ctx.squeeze_C = True
—> 42 out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
43 ctx.delta_softplus = delta_softplus
44 ctx.has_z = z is not None
RuntimeError: Expected u.is_cuda() to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.)