GANs model on MNIST data running the Generator multiple times

im using the Mnist data set i build this GANs model and my goal is to calculate nonsaturating loss my batch size is 256 , latent_dim is 100 and number of epochs is 10:

class Generator(nn.Module):
    def __init__(self, latent_dim, image_size, num_channels,ngpu):
        super(Generator, self).__init__()
        self.latent_dim = latent_dim
        self.image_size = image_size
        self.num_channels = num_channels
        self.ngpu = ngpu
        self.fc = nn.Sequential(
            nn.Linear(latent_dim, 128 * (image_size // 4) ** 2),
            nn.BatchNorm1d(128 * (image_size // 4) ** 2),
            nn.LeakyReLU(0.2, inplace=True)
        )

        self.conv = nn.Sequential(
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2, inplace=True),
            nn.ConvTranspose2d(64, num_channels, kernel_size=4, stride=2, padding=1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.fc(x)
        x = x.view(-1, 128, self.image_size // 4, self.image_size // 4)
        x = self.conv(x)
        return x

# Define the discriminator network
class Discriminator(nn.Module):
    def __init__(self, image_size, num_channels,ngpu):
        super(Discriminator, self).__init__()
        self.image_size = image_size
        self.num_channels = num_channels
        self.ngpu = ngpu
        self.conv = nn.Sequential(
            nn.Conv2d(num_channels, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True)
        )

        self.fc = nn.Sequential(
            nn.Linear(128 * (image_size // 4) ** 2, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.conv(x)
        x = x.view(-1, 128 * (self.image_size // 4) ** 2)
        x = self.fc(x)
        return x
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

# Initialize the generator and discriminator networks
generator = Generator(latent_dim, image_size, num_channels,ngpu).to(device)
discriminator=Discriminator(image_size, num_channels,ngpu).to(device)
generator.apply( weights_init)
discriminator.apply( weights_init)

Im training the model to calculate nonsaturating loss:

real_label = 1
fake_label = 0

def training_loop(num_epochs=num_epochs, saturating=False):
    netG = generator
    netD=discriminator
    ## Initialize BCELoss function
    #criterion = nn.BCELoss()
    criterion =  nn.BCELoss()
    # Setup Adam optimizers for both G and D
    optimizerD = optim.SGD(netD.parameters(), lr=0.0001, momentum=0.9)
    optimizerG = optim.SGD(netG.parameters(), lr=0.0001, momentum=0.9)
    ## Training Loop
    # Lists to keep track of progress
    img_list = []
    G_losses = []
    G_grads_mean = []
    G_grads_std = []
    D_losses = []
    iters = 0
    print("Starting Training Loop...")
    # For each epoch
    for epoch in range(num_epochs):
        # For each batch 
        for i, data in enumerate(train_loader):

            ############################
            # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
            ###########################
            ## Train with all-real batch
            netD.zero_grad()
            # Format batch
            real_cpu = data[0].to(device)
            b_size = real_cpu.size(0)
            label = torch.full((b_size,), real_label, device=device, dtype=torch.float)
            # Forward pass real batch through D
            output = netD(real_cpu).view(-1)
            # Calculate loss on all-real batch
            errD_real = criterion(output, label)
            # Calculate gradients for D in backward pass
            errD_real.backward()
            D_x = output.mean().item()

            ## Train with all-fake batch
            # Generate batch of latent vectors
            noise = torch.randn(b_size, latent_dim, device=device)
            # Generate fake image batch with G
            fake = netG(noise)
            label.fill_(fake_label)
            # Classify all fake batch with D
            output = netD(fake.detach()).view(-1)
            # Calculate D's loss on the all-fake batch
            errD_fake = criterion(output, label)
            # Calculate the gradients for this batch
            errD_fake.backward()
            D_G_z1 = output.mean().item()
            # Add the gradients from the all-real and all-fake batches
            errD = errD_real + errD_fake
            # Update D
            optimizerD.step()
            for j in range(gen_steps):
              ############################
              # (2) Update G network: maximize log(D(G(z)))
              ###########################
              netG.zero_grad()
              label.fill_(real_label) # Non-saturating loss: fake labels are real for generator cost
              # Since we just updated D, perform another forward pass of all-fake batch through D
              output = netD(fake).view(-1)
              # Calculate G's loss based on this output
              errG = criterion(output, label) # Non-saturating loss
              # Calculate gradients for G
              errG.backward()
              D_G_z2 = output.mean().item()
              # Update G
              optimizerG.step()
              # Save gradients
              G_grad = [p.grad.view(-1).cpu().numpy() for p in list(netG.parameters())]
              G_grads_mean.append(np.concatenate(G_grad).mean())
              G_grads_std.append(np.concatenate(G_grad).std())
              # Output training stats
              if i % 50 == 0:
                  print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                        % (epoch+1, num_epochs, i, len(train_loader),
                          errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

              # Save Losses for plotting later
              G_losses.append(errG.item())
              D_losses.append(errD.item())

            
    return G_losses, D_losses

so i want the generator run 8 times for 1 discriminator run ,
but i get the following error

Starting Training Loop…
[1/10][0/235] Loss_D: 0.0067 Loss_G: 5.6489 D(x): 0.9991 D(G(z)): 0.0057 / 0.0057

RuntimeError Traceback (most recent call last)
in <cell line: 2>()
1 # Train with non-saturating G loss
----> 2 G_losses_nonsat, D_losses_nonsat = training_loop(saturating=False)

2 frames
in training_loop(num_epochs, saturating)
70 errG = criterion(output, label) # Non-saturating loss
71 # Calculate gradients for G
—> 72 errG.backward()
73 D_G_z2 = output.mean().item()
74 # Update G

/usr/local/lib/python3.10/dist-packages/torch/_tensor.py in backward(self, gradient, retain_graph, create_graph, inputs)
485 inputs=inputs,
486 )
→ 487 torch.autograd.backward(
488 self, gradient, retain_graph, create_graph, inputs=inputs
489 )

/usr/local/lib/python3.10/dist-packages/torch/autograd/init.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
198 # some Python versions print out the first line of a multi-line function
199 # calls in the traceback and some print out the last line
→ 200 Variable.execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
201 tensors, grad_tensors
, retain_graph, create_graph, inputs,
202 allow_unreachable=True, accumulate_grad=True) # Calls into the C++ engine to run the backward pass

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

cant seen to understand what is the problem
when i did .backward(retain_graph=True) it solved the error but the situration problem happent which wasnt supposed to so im geusiing somthing is wring in my training loop but i dont uderstand what exactly . Thanks for any help