GPU memory use increase and training speed slow down

I met exactly the same problem when training a baseline Faster R-CNN (e2e) model using maskrcnn-benchmark with two GPUs (Nvidia P100) on a Linux server. Here’s my training code snipper:

logger.info("Start training")
meters = MetricLogger(delimiter="  ")
max_iter = len(data_loader)
start_iter = arguments["iteration"]
model.train()
start_training_time = time.time()
end = time.time()

for iteration, (images, targets, _) in enumerate(data_loader, start_iter):
    if any(len(target) < 1 for target in targets):
        logger.error(f"Iteration={iteration + 1} || Image Ids used for training {_} || targets Length={[len(target) for target in targets]}" )
        continue
    data_time = time.time() - end
    iteration = iteration + 1
    arguments["iteration"] = iteration

    scheduler.step()

    copy_time = time.time()
    images = images.to(device)
    targets = [target.to(device) for target in targets]
    copy_time = time.time() - copy_time

    forward_time = time.time()
    loss_dict = model(images, targets)
    forward_time = time.time() - forward_time

    losses = sum(loss for loss in loss_dict.values())

    # reduce losses over all GPUs for logging purposes
    reduce_time = time.time()
    loss_dict_reduced = reduce_loss_dict(loss_dict)
    reduce_time = time.time() - reduce_time
    losses_reduced = sum(loss for loss in loss_dict_reduced.values())
    meters.update(loss=losses_reduced, **loss_dict_reduced)

    backward_time = time.time()
    optimizer.zero_grad()
    # Note: If mixed precision is not used, this ends up doing nothing
    # Otherwise apply loss scaling for mixed-precision recipe
    with amp.scale_loss(losses, optimizer) as scaled_losses:
        scaled_losses.backward()
    optimizer.step()
    backward_time = time.time() - backward_time

    batch_time = time.time() - end
    end = time.time()
    meters.update(
        time=batch_time, data=data_time,
        cpu2gpu=copy_time, forward=forward_time,
        reduce=reduce_time, backward=backward_time
    )

I print the time consumption of each step every 20 iterations as shown below, it can be seen that the forward time, backward time and the gpu memory consumption increase gradually comparing to other timing metrics as the training goes. Just like the situation described by @NeoZ, they will become stable after some number of iterations (~9000 iterations in my case). I’m sure the problem doesn’t exist in my dataloader since the data loading and preprocessing time is very short and stable all the time. So, does someone know what’s the real cause for this situation? Really appreciate any help, thanks!

maskrcnn/maskrcnn_benchmark/engine/trainer.py:  50 INFO: Start training
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:40:43  iter: 20  loss: 7.0394 (7.4629)  loss_box_reg: 0.0068 (0.0173)  loss_classifier: 0.0740 (0.1274)  loss_objectness: 0.5356 (0.5280)  loss_rpn_box_reg: 0.0187 (0.0411)  time: 0.3847 (0.4568)  data: 0.0066 (0.0320)  cpu2gpu: 0.1230 (0.1184)  forward: 0.1665 (0.2189)  reduce: 0.0003 (0.0003)  backward: 0.0706 (0.0716)  lr: 0.000680  max mem: 2981
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:05:50  iter: 40  loss: 5.0266 (6.2484)  loss_box_reg: 0.0653 (0.0478)  loss_classifier: 0.1414 (0.1588)  loss_objectness: 0.1579 (0.3589)  loss_rpn_box_reg: 0.0260 (0.0363)  time: 0.4380 (0.4510)  data: 0.0073 (0.0199)  cpu2gpu: 0.1366 (0.1265)  forward: 0.1876 (0.2043)  reduce: 0.0003 (0.0003)  backward: 0.0895 (0.0857)  lr: 0.000860  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 20:51:38  iter: 60  loss: 4.3640 (5.6448)  loss_box_reg: 0.0925 (0.0641)  loss_classifier: 0.1535 (0.1631)  loss_objectness: 0.1048 (0.2927)  loss_rpn_box_reg: 0.0241 (0.0363)  time: 0.4394 (0.4487)  data: 0.0072 (0.0159)  cpu2gpu: 0.1247 (0.1264)  forward: 0.1841 (0.1993)  reduce: 0.0003 (0.0003)  backward: 0.1036 (0.0924)  lr: 0.001040  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 20:57:19  iter: 80  loss: 4.0550 (5.2782)  loss_box_reg: 0.0893 (0.0738)  loss_classifier: 0.1413 (0.1625)  loss_objectness: 0.1033 (0.2534)  loss_rpn_box_reg: 0.0250 (0.0349)  time: 0.4273 (0.4497)  data: 0.0075 (0.0138)  cpu2gpu: 0.1311 (0.1279)  forward: 0.1906 (0.1984)  reduce: 0.0003 (0.0003)  backward: 0.1000 (0.0961)  lr: 0.001220  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:05:04  iter: 100  loss: 4.0677 (5.0424)  loss_box_reg: 0.1020 (0.0804)  loss_classifier: 0.1369 (0.1593)  loss_objectness: 0.0844 (0.2275)  loss_rpn_box_reg: 0.0235 (0.0344)  time: 0.4470 (0.4510)  data: 0.0076 (0.0126)  cpu2gpu: 0.1261 (0.1293)  forward: 0.1866 (0.1970)  reduce: 0.0003 (0.0003)  backward: 0.1029 (0.0984)  lr: 0.001400  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 20:59:19  iter: 120  loss: 3.9398 (4.8649)  loss_box_reg: 0.0849 (0.0825)  loss_classifier: 0.1308 (0.1548)  loss_objectness: 0.0735 (0.2028)  loss_rpn_box_reg: 0.0188 (0.0328)  time: 0.4265 (0.4500)  data: 0.0070 (0.0117)  cpu2gpu: 0.1242 (0.1294)  forward: 0.1829 (0.1954)  reduce: 0.0003 (0.0003)  backward: 0.0916 (0.0994)  lr: 0.001580  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:24:35  iter: 140  loss: 3.8684 (4.7239)  loss_box_reg: 0.1126 (0.0892)  loss_classifier: 0.1458 (0.1559)  loss_objectness: 0.0552 (0.1874)  loss_rpn_box_reg: 0.0171 (0.0323)  time: 0.4648 (0.4543)  data: 0.0071 (0.0111)  cpu2gpu: 0.1297 (0.1303)  forward: 0.1918 (0.1958)  reduce: 0.0003 (0.0003)  backward: 0.1004 (0.1027)  lr: 0.001760  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:23:17  iter: 160  loss: 3.8812 (4.6223)  loss_box_reg: 0.0921 (0.0911)  loss_classifier: 0.1369 (0.1539)  loss_objectness: 0.0678 (0.1738)  loss_rpn_box_reg: 0.0173 (0.0324)  time: 0.4534 (0.4541)  data: 0.0070 (0.0107)  cpu2gpu: 0.1312 (0.1313)  forward: 0.1744 (0.1944)  reduce: 0.0003 (0.0003)  backward: 0.0958 (0.1026)  lr: 0.001940  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:31:55  iter: 180  loss: 3.8045 (4.5327)  loss_box_reg: 0.1131 (0.0946)  loss_classifier: 0.1331 (0.1534)  loss_objectness: 0.0545 (0.1619)  loss_rpn_box_reg: 0.0187 (0.0314)  time: 0.4682 (0.4555)  data: 0.0079 (0.0103)  cpu2gpu: 0.1255 (0.1309)  forward: 0.1945 (0.1948)  reduce: 0.0003 (0.0003)  backward: 0.1132 (0.1045)  lr: 0.002120  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 21:49:16  iter: 200  loss: 4.0134 (4.4732)  loss_box_reg: 0.1317 (0.1001)  loss_classifier: 0.1635 (0.1552)  loss_objectness: 0.0777 (0.1560)  loss_rpn_box_reg: 0.0341 (0.0325)  time: 0.4797 (0.4585)  data: 0.0072 (0.0101)  cpu2gpu: 0.1337 (0.1317)  forward: 0.2020 (0.1957)  reduce: 0.0003 (0.0003)  backward: 0.1211 (0.1060)  lr: 0.002300  max mem: 4058
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 22:01:37  iter: 220  loss: 3.6355 (4.4004)  loss_box_reg: 0.1289 (0.1039)  loss_classifier: 0.1628 (0.1564)  loss_objectness: 0.0662 (0.1485)  loss_rpn_box_reg: 0.0178 (0.0318)  time: 0.4608 (0.4606)  data: 0.0076 (0.0099)  cpu2gpu: 0.1258 (0.1314)  forward: 0.1935 (0.1965)  reduce: 0.0003 (0.0003)  backward: 0.1060 (0.1082)  lr: 0.002480  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 22:15:52  iter: 240  loss: 3.5626 (4.3338)  loss_box_reg: 0.1481 (0.1078)  loss_classifier: 0.1520 (0.1577)  loss_objectness: 0.0474 (0.1409)  loss_rpn_box_reg: 0.0153 (0.0308)  time: 0.4813 (0.4630)  data: 0.0072 (0.0097)  cpu2gpu: 0.1318 (0.1322)  forward: 0.1910 (0.1967)  reduce: 0.0003 (0.0003)  backward: 0.1078 (0.1095)  lr: 0.002660  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 22:31:14  iter: 260  loss: 3.9373 (4.2989)  loss_box_reg: 0.1472 (0.1118)  loss_classifier: 0.1647 (0.1597)  loss_objectness: 0.0552 (0.1351)  loss_rpn_box_reg: 0.0315 (0.0309)  time: 0.4451 (0.4655)  data: 0.0080 (0.0096)  cpu2gpu: 0.1201 (0.1323)  forward: 0.1979 (0.1972)  reduce: 0.0003 (0.0003)  backward: 0.1123 (0.1113)  lr: 0.002840  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 22:47:43  iter: 280  loss: 3.2553 (4.2348)  loss_box_reg: 0.1327 (0.1144)  loss_classifier: 0.1449 (0.1603)  loss_objectness: 0.0445 (0.1287)  loss_rpn_box_reg: 0.0198 (0.0303)  time: 0.5066 (0.4683)  data: 0.0078 (0.0095)  cpu2gpu: 0.1332 (0.1328)  forward: 0.2082 (0.1984)  reduce: 0.0003 (0.0003)  backward: 0.1288 (0.1128)  lr: 0.003020  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 23:10:17  iter: 300  loss: 3.4788 (4.1915)  loss_box_reg: 0.1916 (0.1201)  loss_classifier: 0.2173 (0.1643)  loss_objectness: 0.0662 (0.1252)  loss_rpn_box_reg: 0.0345 (0.0307)  time: 0.5200 (0.4721)  data: 0.0073 (0.0094)  cpu2gpu: 0.1331 (0.1333)  forward: 0.2076 (0.1991)  reduce: 0.0003 (0.0003)  backward: 0.1387 (0.1150)  lr: 0.003200  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 23:19:29  iter: 320  loss: 3.1697 (4.1298)  loss_box_reg: 0.1373 (0.1209)  loss_classifier: 0.1565 (0.1634)  loss_objectness: 0.0377 (0.1201)  loss_rpn_box_reg: 0.0175 (0.0307)  time: 0.4782 (0.4737)  data: 0.0076 (0.0093)  cpu2gpu: 0.1317 (0.1335)  forward: 0.2023 (0.1997)  reduce: 0.0003 (0.0003)  backward: 0.1177 (0.1160)  lr: 0.003380  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 23:27:53  iter: 340  loss: 3.5830 (4.0903)  loss_box_reg: 0.1246 (0.1226)  loss_classifier: 0.1451 (0.1639)  loss_objectness: 0.0364 (0.1158)  loss_rpn_box_reg: 0.0189 (0.0305)  time: 0.4817 (0.4751)  data: 0.0072 (0.0092)  cpu2gpu: 0.1341 (0.1342)  forward: 0.1938 (0.1998)  reduce: 0.0003 (0.0003)  backward: 0.1007 (0.1163)  lr: 0.003560  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 23:34:03  iter: 360  loss: 3.4124 (4.0554)  loss_box_reg: 0.1252 (0.1234)  loss_classifier: 0.1601 (0.1637)  loss_objectness: 0.0377 (0.1120)  loss_rpn_box_reg: 0.0241 (0.0300)  time: 0.4882 (0.4762)  data: 0.0073 (0.0092)  cpu2gpu: 0.1313 (0.1344)  forward: 0.1970 (0.2001)  reduce: 0.0003 (0.0003)  backward: 0.1131 (0.1170)  lr: 0.003740  max mem: 4379
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 1 day, 23:47:14  iter: 380  loss: 3.2500 (4.0164)  loss_box_reg: 0.1572 (0.1261)  loss_classifier: 0.1803 (0.1663)  loss_objectness: 0.0479 (0.1090)  loss_rpn_box_reg: 0.0216 (0.0296)  time: 0.5071 (0.4784)  data: 0.0075 (0.0091)  cpu2gpu: 0.1306 (0.1353)  forward: 0.2054 (0.2004)  reduce: 0.0003 (0.0003)  backward: 0.1204 (0.1178)  lr: 0.003920  max mem: 4379

…………

maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:06:54  iter: 1500  loss: 2.4801 (3.1181)  loss_box_reg: 0.1295 (0.1449)  loss_classifier: 0.1653 (0.1798)  loss_objectness: 0.0367 (0.0623)  loss_rpn_box_reg: 0.0202 (0.0271)  time: 0.5593 (0.5233)  data: 0.0081 (0.0084)  cpu2gpu: 0.1254 (0.1423)  forward: 0.2159 (0.2126)  reduce: 0.0003 (0.0003)  backward: 0.1503 (0.1415)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:07:50  iter: 1520  loss: 2.3080 (3.1081)  loss_box_reg: 0.1508 (0.1449)  loss_classifier: 0.1658 (0.1796)  loss_objectness: 0.0327 (0.0620)  loss_rpn_box_reg: 0.0207 (0.0274)  time: 0.4965 (0.5235)  data: 0.0078 (0.0084)  cpu2gpu: 0.1257 (0.1423)  forward: 0.2098 (0.2126)  reduce: 0.0003 (0.0003)  backward: 0.1278 (0.1416)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:08:53  iter: 1540  loss: 2.4779 (3.1005)  loss_box_reg: 0.1054 (0.1446)  loss_classifier: 0.1538 (0.1793)  loss_objectness: 0.0487 (0.0620)  loss_rpn_box_reg: 0.0170 (0.0275)  time: 0.5419 (0.5237)  data: 0.0076 (0.0084)  cpu2gpu: 0.1201 (0.1423)  forward: 0.2264 (0.2127)  reduce: 0.0003 (0.0003)  backward: 0.1441 (0.1418)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:09:55  iter: 1560  loss: 2.5180 (3.0927)  loss_box_reg: 0.1225 (0.1444)  loss_classifier: 0.1547 (0.1790)  loss_objectness: 0.0241 (0.0617)  loss_rpn_box_reg: 0.0229 (0.0274)  time: 0.5217 (0.5239)  data: 0.0083 (0.0084)  cpu2gpu: 0.1211 (0.1421)  forward: 0.2227 (0.2129)  reduce: 0.0003 (0.0003)  backward: 0.1403 (0.1421)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:11:58  iter: 1580  loss: 2.5792 (3.0861)  loss_box_reg: 0.1215 (0.1444)  loss_classifier: 0.1706 (0.1791)  loss_objectness: 0.0316 (0.0616)  loss_rpn_box_reg: 0.0158 (0.0275)  time: 0.5264 (0.5243)  data: 0.0083 (0.0084)  cpu2gpu: 0.1396 (0.1422)  forward: 0.2116 (0.2130)  reduce: 0.0003 (0.0003)  backward: 0.1335 (0.1422)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:14:21  iter: 1600  loss: 2.5311 (3.0786)  loss_box_reg: 0.1521 (0.1445)  loss_classifier: 0.1792 (0.1791)  loss_objectness: 0.0367 (0.0613)  loss_rpn_box_reg: 0.0179 (0.0274)  time: 0.5520 (0.5247)  data: 0.0078 (0.0084)  cpu2gpu: 0.1319 (0.1423)  forward: 0.2236 (0.2131)  reduce: 0.0003 (0.0003)  backward: 0.1474 (0.1424)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:15:34  iter: 1620  loss: 2.4053 (3.0714)  loss_box_reg: 0.1476 (0.1445)  loss_classifier: 0.2073 (0.1794)  loss_objectness: 0.0326 (0.0611)  loss_rpn_box_reg: 0.0178 (0.0275)  time: 0.5354 (0.5250)  data: 0.0077 (0.0084)  cpu2gpu: 0.1224 (0.1423)  forward: 0.2194 (0.2132)  reduce: 0.0003 (0.0003)  backward: 0.1756 (0.1426)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:19:16  iter: 1640  loss: 2.6117 (3.0665)  loss_box_reg: 0.1539 (0.1448)  loss_classifier: 0.1869 (0.1797)  loss_objectness: 0.0254 (0.0609)  loss_rpn_box_reg: 0.0142 (0.0274)  time: 0.5810 (0.5256)  data: 0.0082 (0.0084)  cpu2gpu: 0.1215 (0.1423)  forward: 0.2371 (0.2134)  reduce: 0.0003 (0.0003)  backward: 0.1808 (0.1430)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:21:34  iter: 1660  loss: 2.4975 (3.0600)  loss_box_reg: 0.1336 (0.1448)  loss_classifier: 0.1531 (0.1797)  loss_objectness: 0.0359 (0.0607)  loss_rpn_box_reg: 0.0204 (0.0275)  time: 0.5511 (0.5260)  data: 0.0083 (0.0084)  cpu2gpu: 0.1372 (0.1425)  forward: 0.2126 (0.2135)  reduce: 0.0003 (0.0003)  backward: 0.1353 (0.1431)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:22:11  iter: 1680  loss: 2.4077 (3.0530)  loss_box_reg: 0.1154 (0.1447)  loss_classifier: 0.1439 (0.1795)  loss_objectness: 0.0327 (0.0605)  loss_rpn_box_reg: 0.0170 (0.0274)  time: 0.5093 (0.5262)  data: 0.0083 (0.0084)  cpu2gpu: 0.1224 (0.1425)  forward: 0.2048 (0.2136)  reduce: 0.0003 (0.0003)  backward: 0.1452 (0.1432)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:24:46  iter: 1700  loss: 2.3313 (3.0448)  loss_box_reg: 0.1261 (0.1445)  loss_classifier: 0.1429 (0.1793)  loss_objectness: 0.0257 (0.0602)  loss_rpn_box_reg: 0.0145 (0.0273)  time: 0.5361 (0.5266)  data: 0.0080 (0.0084)  cpu2gpu: 0.1421 (0.1428)  forward: 0.1962 (0.2136)  reduce: 0.0003 (0.0003)  backward: 0.1095 (0.1432)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:25:25  iter: 1720  loss: 2.4918 (3.0383)  loss_box_reg: 0.1289 (0.1444)  loss_classifier: 0.1790 (0.1792)  loss_objectness: 0.0270 (0.0598)  loss_rpn_box_reg: 0.0172 (0.0273)  time: 0.5318 (0.5268)  data: 0.0080 (0.0084)  cpu2gpu: 0.1240 (0.1427)  forward: 0.2130 (0.2136)  reduce: 0.0003 (0.0003)  backward: 0.1294 (0.1433)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:26:39  iter: 1740  loss: 2.4167 (3.0315)  loss_box_reg: 0.1342 (0.1443)  loss_classifier: 0.1781 (0.1791)  loss_objectness: 0.0406 (0.0599)  loss_rpn_box_reg: 0.0182 (0.0275)  time: 0.5242 (0.5270)  data: 0.0081 (0.0084)  cpu2gpu: 0.1216 (0.1427)  forward: 0.2113 (0.2137)  reduce: 0.0003 (0.0003)  backward: 0.1244 (0.1435)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:27:20  iter: 1760  loss: 2.1650 (3.0233)  loss_box_reg: 0.1069 (0.1441)  loss_classifier: 0.1526 (0.1789)  loss_objectness: 0.0277 (0.0597)  loss_rpn_box_reg: 0.0148 (0.0274)  time: 0.5301 (0.5271)  data: 0.0077 (0.0084)  cpu2gpu: 0.1325 (0.1427)  forward: 0.2103 (0.2137)  reduce: 0.0003 (0.0003)  backward: 0.1286 (0.1436)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:28:23  iter: 1780  loss: 2.3300 (3.0167)  loss_box_reg: 0.0959 (0.1442)  loss_classifier: 0.1505 (0.1788)  loss_objectness: 0.0285 (0.0596)  loss_rpn_box_reg: 0.0154 (0.0274)  time: 0.5150 (0.5273)  data: 0.0080 (0.0084)  cpu2gpu: 0.1387 (0.1429)  forward: 0.2046 (0.2138)  reduce: 0.0003 (0.0003)  backward: 0.1238 (0.1436)  lr: 0.005000  max mem: 4976
maskrcnn/maskrcnn_benchmark/engine/trainer.py: 122 INFO: eta: 2 days, 4:27:41  iter: 1800  loss: 2.1726 (3.0082)  loss_box_reg: 0.1228 (0.1441)  loss_classifier: 0.1485 (0.1787)  loss_objectness: 0.0288 (0.0594)  loss_rpn_box_reg: 0.0167 (0.0273)  time: 0.4875 (0.5273)  data: 0.0081 (0.0084)  cpu2gpu: 0.1205 (0.1428)  forward: 0.2088 (0.2138)  reduce: 0.0003 (0.0003)  backward: 0.1166 (0.1436)  lr: 0.005000  max mem: 4976