Having problems in segmenting image when using libtorch

I may find where cause these problems.
In pytorch, after transforming numpy to tensor, the image value doesn’t change expect int16 to float32:

    test_data = np.asarray(nda[110])        # int16
    test_data = torch.from_numpy(test_data)
    test_data = torch.tensor(test_data,dtype=torch.float32) #to float32
    test_data=torch.unsqueeze(test_data,0)
    test_data=torch.unsqueeze(test_data,1)

image

But in libtorch, i implement the same progress with code:

        torch::Tensor tImage = torch::from_blob(src.data, { 240,240,1 }, torch::kFloat32);
	tImage = tImage.permute({ 2,0,1 });
	tImage = tImage.div(255);
	tImage = tImage.unsqueeze(0);
	cout << "prob:" << tImage.data() << endl;
	vector<torch::jit::IValue> inputs;  //def an input

	inputs.push_back(torch::ones({ 1,1,240,240 }).toType(torch::kFloat32));

and i get different values:

i don’t exactly know whether is the key point or not. i need help.

Edit: those C++ output vaules are the result of ‘torch.div(255)’. i think it is not the key point.