Help regarding Slerp function for generative model sampling

There are some minor error regarding the shapes.
Here is a working solution for batched inputs:

def slerp(val, low, high):
    low_norm = low/torch.norm(low, dim=1, keepdim=True)
    high_norm = high/torch.norm(high, dim=1, keepdim=True)
    omega = torch.acos((low_norm*high_norm).sum(1))
    so = torch.sin(omega)
    res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
    return res
2 Likes