How can I change the input size in SSD-VGG16?

Hello.

I am working on object detection based on mmdetection.

Usually in ssd, the input image is fixed at 300, 512, but I want to proceed with the training with an image of 1024x512.

However, I am trying to train by changing the input image to 1024x512, but it is not easy.

How do I change the input image to a size other than 300 or 500?

Please help.

The code is below.

SSD

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import VGG, constant_init, kaiming_init, normal_init, xavier_init
from mmcv.runner import load_checkpoint

from mmdet.utils import get_root_logger
from ..builder import BACKBONES


@BACKBONES.register_module()
class SSDVGG(VGG):
    """VGG Backbone network for single-shot-detection.

    Args:
        input_size (int): width and height of input, from {300, 512}.
        depth (int): Depth of vgg, from {11, 13, 16, 19}.
        out_indices (Sequence[int]): Output from which stages.

    Example:
        >>> self = SSDVGG(input_size=300, depth=11)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 300, 300)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 1024, 19, 19)
        (1, 512, 10, 10)
        (1, 256, 5, 5)
        (1, 256, 3, 3)
        (1, 256, 1, 1)
    """
    extra_setting = {
        300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256),
        512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128),
    }

    def __init__(self,
                 input_size,
                 depth,
                 with_last_pool=False,
                 ceil_mode=True,
                 out_indices=(3, 4),
                 out_feature_indices=(22, 34),
                 l2_norm_scale=20.):
        # TODO: in_channels for mmcv.VGG
        super(SSDVGG, self).__init__(
            depth,
            with_last_pool=with_last_pool,
            ceil_mode=ceil_mode,
            out_indices=out_indices)
        assert input_size in (300, 512)
        self.input_size = input_size

        self.features.add_module(
            str(len(self.features)),
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
        self.features.add_module(
            str(len(self.features)),
            nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.features.add_module(
            str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.out_feature_indices = out_feature_indices

        self.inplanes = 1024
        self.extra = self._make_extra_layers(self.extra_setting[input_size])
        self.l2_norm = L2Norm(
            self.features[out_feature_indices[0] - 1].out_channels,
            l2_norm_scale)

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.features.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)
        else:
            raise TypeError('pretrained must be a str or None')

        for m in self.extra.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform')

        constant_init(self.l2_norm, self.l2_norm.scale)

    def forward(self, x):
        """Forward function."""
        outs = []
        for i, layer in enumerate(self.features):
            x = layer(x)
            if i in self.out_feature_indices:
                outs.append(x)
        for i, layer in enumerate(self.extra):
            x = F.relu(layer(x), inplace=True)
            if i % 2 == 1:
                outs.append(x)
        outs[0] = self.l2_norm(outs[0])
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def _make_extra_layers(self, outplanes):
        layers = []
        kernel_sizes = (1, 3)
        num_layers = 0
        outplane = None
        for i in range(len(outplanes)):
            if self.inplanes == 'S':
                self.inplanes = outplane
                continue
            k = kernel_sizes[num_layers % 2]
            if outplanes[i] == 'S':
                outplane = outplanes[i + 1]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=2, padding=1)
            else:
                outplane = outplanes[i]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=1, padding=0)
            layers.append(conv)
            self.inplanes = outplanes[i]
            num_layers += 1
        if self.input_size == 512:
            layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))

        return nn.Sequential(*layers)


class L2Norm(nn.Module):

    def __init__(self, n_dims, scale=20., eps=1e-10):
        """L2 normalization layer.

        Args:
            n_dims (int): Number of dimensions to be normalized
            scale (float, optional): Defaults to 20..
            eps (float, optional): Used to avoid division by zero.
                Defaults to 1e-10.
        """
        super(L2Norm, self).__init__()
        self.n_dims = n_dims
        self.weight = nn.Parameter(torch.Tensor(self.n_dims))
        self.eps = eps
        self.scale = scale

    def forward(self, x):
        """Forward function."""
        # normalization layer convert to FP32 in FP16 training
        x_float = x.float()
        norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
        return (self.weight[None, :, None, None].float().expand_as(x_float) *
                x_float / norm).type_as(x)

What changes did you do to the model and what kind of errors did you see?

Additional code is as follows:

######################################################
input_size = (1024, 512)
dataset_type = 'CustomDataset'
num_classes_dict = {'CocoDataset':80, 'VOCDataset':20, 'CityscapesDataset':8, 'CustomDataset': 6}
num_classes = num_classes_dict[dataset_type]
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) #imagenet mean/std

_base_ = [
    f'../_xbase_/datasets/{dataset_type.lower()}.py',
    '../_xbase_/hyper_params/common_config.py',
    '../_xbase_/hyper_params/ssd_config.py',
    '../_xbase_/hyper_params/schedule.py',
]

######################################################
# settings for qat or calibration - uncomment after doing floating point training
# also change dataset_repeats in the dataset config to 1 for fast learning
quantize = False #'training' #'calibration'
initial_learning_rate = 8e-2
samples_per_gpu = 4
if quantize:
  load_from = './work_dirs/ssd_vgg/latest.pth'
  optimizer = dict(type='SGD', lr=initial_learning_rate/10.0, momentum=0.9, weight_decay=1e-4)
  total_epochs = 1 if quantize == 'calibration' else 6
else:
  optimizer = dict(type='SGD', lr=initial_learning_rate, momentum=0.9, weight_decay=1e-4)
#

######################################################
backbone_type = 'SSDVGG'
backbone_depth = 16
pretrained='torchvision://vgg16'
bacbone_out_channels=[512, 1024, 512, 256, 256, 256, 256]
backbone_out_indices = (3, 4)

basesize_ratio_range = (0.1, 0.9)

conv_cfg = None
norm_cfg = dict(type='BN')

model = dict(
    type='SingleStageDetector',
    pretrained=pretrained,
    backbone=dict(
        type='SSDVGG',
        depth=backbone_depth,
        input_size = input_size
        out_indices=backbone_out_indices,
        norm_eval=False,
        style='pytorch'),
    bbox_head=dict(
        type='SSDHead',
        in_channels=bacbone_out_channels,
        num_classes=num_classes,
        anchor_generator=dict(
            type='SSDAnchorGenerator',
            scale_major=False,
            input_size=input_size,
            basesize_ratio_range=basesize_ratio_range,
            strides=[8, 16, 32, 64, 128, 256, 512],
            ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[0.1, 0.1, 0.2, 0.2])))

# dataset settings
train_pipeline = [
    dict(type='LoadImageFromFile', to_float32=True),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PhotoMetricDistortion',
        brightness_delta=32,
        contrast_range=(0.5, 1.5),
        saturation_range=(0.5, 1.5),
        hue_delta=18) if not quantize else dict(type='Bypass'),
    dict(
        type='Expand',
        mean=img_norm_cfg['mean'],
        to_rgb=img_norm_cfg['to_rgb'],
        ratio_range=(1, 4)),
    dict(
        type='MinIoURandomCrop',
        min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
        min_crop_size=0.3),
    dict(type='Resize', img_scale=input_size, keep_ratio=False),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]

test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=input_size,
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=False),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]

data = dict(
    samples_per_gpu=samples_per_gpu,
    workers_per_gpu=0,
    train=dict(dataset=dict(pipeline=train_pipeline)),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))

We proceeded by changing the input size of the model.

The input size I applied is 1024x512.

And the following error occurred.

ValueError: Expected input batch_size (32706) to match target batch_size (32679)

First, the backbone for SSD may need to be retrained on the higher resolution classification task. By default, both SSD300 and SSD512 use VCC16 trained on ImageNet images of 3x224x224. That will need to change if your dataset is sufficiently complex and the backbone does not perform well with the neck.

Second, using a larger feature map will increase cost, linearly I think. So double the feature map size will mean you will need double the VRAM and time to train/infer. Keep that in mind.

Third, the network architecture itself does not need to be change. If the input feature map is larger, the multiple scales of feature maps on which the prediction convolutions work will just be larger and should work still; the only difference is that the network will produce way more candidate bounding boxes for NMS.

Lastly, for your ValueError bug, what line was it on? There seems to be a mismatch of batch dims by |27|. Is the error present for SSD300 and SSD512? If not, when does it appear? Only when you change input to 3x1024x1024? Try to use square FMs like 3x1024x1024 instead of rectangles like 3x1024x512.

Thank you for answer.

ValueError is raised at line 148 of the code below.

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import xavier_init
from mmcv.runner import force_fp32

from mmdet.core import (build_anchor_generator, build_assigner,
                        build_bbox_coder, build_sampler, multi_apply)
from ..builder import HEADS
from ..losses import smooth_l1_loss
from .anchor_head import AnchorHead


# TODO: add loss evaluator for SSD
@HEADS.register_module()
class SSDHead(AnchorHead):
    """SSD head used in https://arxiv.org/abs/1512.02325.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        anchor_generator (dict): Config dict for anchor generator
        bbox_coder (dict): Config of bounding box coder.
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied on decoded bounding boxes. Default: False
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
    """  # noqa: W605

    def __init__(self,
                 num_classes=6,
                 in_channels=(512, 1024, 512, 256, 256, 256, 256),
                 anchor_generator=dict(
                     type='SSDAnchorGenerator',
                     scale_major=False,
                     input_size=512,
                     strides=[8, 16, 32, 64, 128, 256, 512],
                     ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]),
                     basesize_ratio_range=(0.1, 0.9)),
                 bbox_coder=dict(
                     type='DeltaXYWHBBoxCoder',
                     target_means=[.0, .0, .0, .0],
                     target_stds=[1.0, 1.0, 1.0, 1.0],
                 ),
                 reg_decoded_bbox=False,
                 train_cfg=None,
                 test_cfg=None):
        super(AnchorHead, self).__init__()
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.cls_out_channels = num_classes + 1  # add background class
        self.anchor_generator = build_anchor_generator(anchor_generator)
        num_anchors = self.anchor_generator.num_base_anchors


        reg_convs = []
        cls_convs = []
        for i in range(len(in_channels)):
            reg_convs.append(
                nn.Conv2d(
                    in_channels[i],
                    num_anchors[i] * 4,
                    kernel_size=3,
                    padding=1))
            cls_convs.append(
                nn.Conv2d(
                    in_channels[i],
                    num_anchors[i] * (num_classes + 1),
                    kernel_size=3,
                    padding=1))
        self.reg_convs = nn.ModuleList(reg_convs)
        self.cls_convs = nn.ModuleList(cls_convs)

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.reg_decoded_bbox = reg_decoded_bbox
        self.use_sigmoid_cls = False
        self.cls_focal_loss = False
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        # set sampling=False for archor_target
        self.sampling = False
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            # SSD sampling=False so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)
        self.fp16_enabled = False

    def init_weights(self):
        """Initialize weights of the head."""
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform', bias=0)

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Classification scores for all scale
                    levels, each is a 4D-tensor, the channels number is
                    num_anchors * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for all scale
                    levels, each is a 4D-tensor, the channels number is
                    num_anchors * 4.
        """
        cls_scores = []
        bbox_preds = []
        for feat, reg_conv, cls_conv in zip(feats, self.reg_convs,
                                            self.cls_convs):
            cls_scores.append(cls_conv(feat))
            bbox_preds.append(reg_conv(feat))
        return cls_scores, bbox_preds

    def loss_single(self, cls_score, bbox_pred, anchor, labels, label_weights,
                    bbox_targets, bbox_weights, num_total_samples):
        """Compute loss of a single image.

        Args:
            cls_score (Tensor): Box scores for eachimage
                Has shape (num_total_anchors, num_classes).
            bbox_pred (Tensor): Box energies / deltas for each image
                level with shape (num_total_anchors, 4).
            anchors (Tensor): Box reference for each scale level with shape
                (num_total_anchors, 4).
            labels (Tensor): Labels of each anchors with shape
                (num_total_anchors,).
            label_weights (Tensor): Label weights of each anchor with shape
                (num_total_anchors,)
            bbox_targets (Tensor): BBox regression targets of each anchor wight
                shape (num_total_anchors, 4).
            bbox_weights (Tensor): BBox regression loss weights of each anchor
                with shape (num_total_anchors, 4).
            num_total_samples (int): If sampling, num total samples equal to
                the number of total anchors; Otherwise, it is the number of
                positive anchors.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """

        loss_cls_all = F.cross_entropy(
            cls_score, labels, reduction='none') * label_weights
        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        pos_inds = ((labels >= 0) &
                    (labels < self.num_classes)).nonzero().reshape(-1)
        neg_inds = (labels == self.num_classes).nonzero().view(-1)

        num_pos_samples = pos_inds.size(0)
        num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples
        if num_neg_samples > neg_inds.size(0):
            num_neg_samples = neg_inds.size(0)
        topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
        loss_cls_pos = loss_cls_all[pos_inds].sum()
        loss_cls_neg = topk_loss_cls_neg.sum()
        loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples

        if self.reg_decoded_bbox:
            bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)

        loss_bbox = smooth_l1_loss(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            beta=self.train_cfg.smoothl1_beta,
            avg_factor=num_total_samples)
        return loss_cls[None], loss_bbox

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            gt_bboxes (list[Tensor]): each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.anchor_generator.num_levels

        device = cls_scores[0].device

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=1,
            unmap_outputs=False)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets

        num_images = len(img_metas)
        all_cls_scores = torch.cat([
            s.permute(0, 2, 3, 1).reshape(
                num_images, -1, self.cls_out_channels) for s in cls_scores
        ], 1)
        all_labels = torch.cat(labels_list, -1).view(num_images, -1)
        all_label_weights = torch.cat(label_weights_list,
                                      -1).view(num_images, -1)
        all_bbox_preds = torch.cat([
            b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
            for b in bbox_preds
        ], -2)
        all_bbox_targets = torch.cat(bbox_targets_list,
                                     -2).view(num_images, -1, 4)
        all_bbox_weights = torch.cat(bbox_weights_list,
                                     -2).view(num_images, -1, 4)

        # concat all level anchors to a single tensor
        all_anchors = []
        for i in range(num_images):
            all_anchors.append(torch.cat(anchor_list[i]))

        # check NaN and Inf
        assert torch.isfinite(all_cls_scores).all().item(), \
            'classification scores become infinite or NaN!'
        assert torch.isfinite(all_bbox_preds).all().item(), \
            'bbox predications become infinite or NaN!'

        losses_cls, losses_bbox = multi_apply(
            self.loss_single,
            all_cls_scores,
            all_bbox_preds,
            all_anchors,
            all_labels,
            all_label_weights,
            all_bbox_targets,
            all_bbox_weights,
            num_total_samples=num_total_pos)
        return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)

I have a few questions.

First, There seems to be a mismatch of batch dims by |27| << What is mean?

Second, if you change the backbone to ResNet, you can learn at 1024x512 image size. However, only SSD-VGG16 gets an error.
I would like to proceed with learning with 1024x512, not 1024x1024.

Please help.