When I create a PyTorch model, how do I print the number of trainable parameters? They have such features in Keras but I don’t know how to do it in PyTorch.

# How do I check the number of parameters of a model?

**Brando_Miranda**(MirandaAgent) #3

how does one make sure `model.parameters()`

is not empty? It seems to be empty for me.

**sinhasam**(Samarth Sinha) #4

Can I see what you are trying to do? The parameters should not be empty unless you have something like:

```
class Model(nn.Module):
def __init__(self):
super(model, self).__init__()
model = Model()
```

The above model has no parameters.

**Brando_Miranda**(MirandaAgent) #5

you can see it here: How does one make sure that the custom NN has parameters?

```
class NN(torch.nn.Module):
def __init__(self, D_layers,act,w_inits,b_inits,bias=True):
super(type(self), self).__init__()
# actiaction func
self.act = act
#create linear layers
self.linear_layers = [None]
for d in range(1,len(D_layers)):
linear_layer = torch.nn.Linear(D_layers[d-1], D_layers[d],bias=bias)
self.linear_layers.append(linear_layer)
```

**kulikovv**(Kulikov Victor) #7

```
def get_n_params(model):
pp=0
for p in list(model.parameters()):
nn=1
for s in list(p.size()):
nn = nn*s
pp += nn
return pp
```

**vsmolyakov**(Vadim Smolyakov) #8

To compute the number of *trainable* parameters:

```
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
```

**baldassarre.fe**(Federico Baldassarre) #9

I like this solution!

To add my 50 cents, I would use `numel()`

instad of `np.prod()`

and compress the expression in one line:

```
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
```

**varghese_alex**(Varghese Alex) #10

Provided the models are similar in keras and pytorch, the number of trainable parameters returned are different in pytorch and keras.

import torch

import torchvision

from torch import nn

from torchvision import models

a= models.resnet50(pretrained=False)

a.fc = nn.Linear(512,2)

count = count_parameters(a)

print (count)

**23509058**

Now in keras

import keras.applications.resnet50 as resnet

model =resnet.ResNet50(include_top=True, weights=None, input_tensor=None, input_shape=None, pooling=None, classes=2)

print model.summary()

**Total params: 23,591,810**

**Trainable params: 23,538,690**

**Non-trainable params: 53,120**

Any reasons why this difference in numbers pop up?

**baldassarre.fe**(Federico Baldassarre) #11

Hi Alex, well spotted. I never did this comparison.

One easy check it to compare the layers one by one, (Linear, Conv2d, BatchNorm etc.), and see if there’s any difference in the number of params.

However, I don’t think there will be any difference, provided that you pay attention to the sneaky default parameters.

After that, you can patiently compare the graphs layer by layer and see if you spot any difference. Maybe it’s a matter of omitted/shared biases in some of the layers.

Btw, the first test is also a good check for the `count_parameters()`

function, let us now if you discover some unexpected behavior

**mfajcik**(Martin Fajčík) #13

I guess this counts shared parameters multiple times, doesn’t it?

```
import torch
from models.modelparts import count_parameters
class tstModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.p = torch.nn.Parameter(
torch.randn(1, 1, 1, requires_grad=True)
.expand(-1, 5, -1)
)
print(count_parameters(tstModel()))
```

prints `5`

If I understand correctly, expand just creates tensor with 5 views to the same parameter, so the right answer should be `1`

.

But I don’t know how to fix that.