here’s a small test program to verify this:
import torch
from torch.autograd import Variable
# define initial data
a = Variable(torch.randn(10), requires_grad=True)
# b is the parent module
b = a * 2
# rewrap variable to have manual history management here
b_ = Variable(b.data, requires_grad=True)
c = b_ * b_
d = b_ * 4
e = c + d
# do backward in combined way
e.backward(torch.ones(e.size()))
b.backward(b_.grad)
agrad_combined = a.grad.data.clone()
# now reset a's grad
# reset a's grad
a.grad.data.zero_()
# let's do separate way
b = a * 2
b_ = Variable(b.data, requires_grad=True)
c = b_ * b_
d = b_ * 4
c.backward(torch.ones(c.size()))
b.backward(b_.grad)
b_.grad.data.zero_()
d.backward(torch.ones(d.size()))
b.backward(b_.grad)
agrad_separate = a.grad.data.clone()
# print difference between combined method and separate method
print(agrad_combined - agrad_separate)
It prints all zeros.