How to extract learned weights correctly

I can’t repeat your error, my idea is that your problem comes from your data set:

model = Net()
optimizer = optim.Adam(model.parameters(), 0.01)
criterion = nn.MSELoss()

def train(epochs):
    model.train()
    for epoch in range(1, epochs+1):
        # I dont have your data set:
        data = Variable(torch.rand(1,100))
        target = Variable(torch.ones(1,100))
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        s = torch.sum(model.fc2.weight.data)
        print(s)

train(100)

this gives

2.79897637193
5.36990540938
7.54833696394
9.55001756023
11.2473634735
13.7405790995
16.014156151
18.0902192594
20.0432560109
22.2485624477
24.2093355584
25.687371045
27.022266482

2 Likes