How to get the tensor of neurons for each hidden layer?

I get your point. You can achieve you purpose by register_forward_hook, here is example code:

from functools import partial

import torch as t
from torchvision.models import resnet50

model = resnet50()
data = t.randn(1, 3, 224, 224)

layer_output = {}


def get_all_layers(net):
    def hook_fn(m, i, o, n=""):
        layer_output[n] = o

    for name, layer in net.named_modules():
        if hasattr(layer, "_module") and layer._module:
            get_all_layers(layer)
        elif hasattr(layer, "_parameters") and layer._parameters:
            # it's a non sequential. Register a hook
            layer.register_forward_hook(partial(hook_fn, n=name))


get_all_layers(model)
model(data)
for k, v in layer_output.items():
    print(f"the output shape of layer: {k} is {v.shape}")

You can refer to pytorch-hooks-gradient-clipping-debugging for deeper interpretation.

1 Like