How to print a model after load it?

It confused me because in torch you can directly print the loaded model. But in pytorch I just saw parameters inside.

print(model) should just work.

1 Like

It looks like a dictionary in python and print can just show the key/value rather than the structure of net.

Try this script from szagoruyko

1 Like

There’s also a summary view of a model in the works: https://github.com/pytorch/pytorch/issues/2001

2 Likes

Nice! Didn’t know that. Seems to be quite useful :slight_smile:

Yes, you can get exact Keras representation, using this code.

Example for VGG16

from torchvision import models
from summary import summary

vgg = models.vgg16()
summary(vgg, (3, 224, 224))

----------------------------------------------------------------
        Layer (type)               Output Shpae         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]            1792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]           36928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]           73856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]          147584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]          295168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]          590080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]          590080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]         1180160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]         2359808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]         2359808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]         2359808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]         2359808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]         2359808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]       102764544
             ReLU-33                 [-1, 4096]               0
          Dropout-34                 [-1, 4096]               0
           Linear-35                 [-1, 4096]        16781312
             ReLU-36                 [-1, 4096]               0
          Dropout-37                 [-1, 4096]               0
           Linear-38                 [-1, 1000]         4097000
================================================================
Total params: 138357544
Trainable params: 138357544
Non-trainable params: 0
----------------------------------------------------------------
2 Likes

Thx. But how about the net with multiple inputs?
It looks that this code can’t work with more than one input.

torchsummary also works with more than one input. Here is the snippet from @sksq96

import torch
import torch.nn as nn
from torchsummary import summary

class SimpleConv(nn.Module):
    def __init__(self):
        super(SimpleConv, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
        )

    def forward(self, x, y):
        x1 = self.features(x)
        x2 = self.features(y)
        return x1, x2
    
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SimpleConv().to(device)

summary(model, [(1, 16, 16), (1, 28, 28)])

Hope it helps.