How to re-set alll parameters in a network

Here is the code with an example that runs:

def lp_norm(mdl: nn.Module, p: int = 2) -> Tensor:
    lp_norms = [w.norm(p) for name, w in mdl.named_parameters()]
    return sum(lp_norms)

def reset_all_weights(model: nn.Module) -> None:
    """
    refs:
        - https://discuss.pytorch.org/t/how-to-re-set-alll-parameters-in-a-network/20819/6
        - https://stackoverflow.com/questions/63627997/reset-parameters-of-a-neural-network-in-pytorch
        - https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    """

    @torch.no_grad()
    def weight_reset(m: nn.Module):
        # - check if the current module has reset_parameters & if it's callabed called it on m
        reset_parameters = getattr(m, "reset_parameters", None)
        if callable(reset_parameters):
            m.reset_parameters()

    # Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    model.apply(fn=weight_reset)


def reset_all_linear_layer_weights(model: nn.Module) -> nn.Module:
    """
    Resets all weights recursively for linear layers.

    ref:
        - https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    """

    @torch.no_grad()
    def init_weights(m):
        if type(m) == nn.Linear:
            m.weight.fill_(1.0)

    # Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    model.apply(init_weights)


def reset_all_weights_with_specific_layer_type(model: nn.Module, modules_type2reset) -> nn.Module:
    """
    Resets all weights recursively for linear layers.

    ref:
        - https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    """

    @torch.no_grad()
    def init_weights(m):
        if type(m) == modules_type2reset:
            # if type(m) == torch.nn.BatchNorm2d:
            #     m.weight.fill_(1.0)
            m.reset_parameters()

    # Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
    model.apply(init_weights)


# -- tests

def reset_params_test():
    import torchvision.models as models
    from uutils.torch_uu import lp_norm

    resnet18 = models.resnet18(pretrained=True)
    resnet18_random = models.resnet18(pretrained=False)

    print(f'{lp_norm(resnet18)=}')
    print(f'{lp_norm(resnet18_random)=}')
    print(f'{lp_norm(resnet18)=}')
    reset_all_weights(resnet18)
    print(f'{lp_norm(resnet18)=}')


if __name__ == '__main__':
    reset_params_test()
    print('Done! \a\n')

output:

lp_norm(resnet18)=tensor(517.5472, grad_fn=<AddBackward0>)
lp_norm(resnet18_random)=tensor(668.3687, grad_fn=<AddBackward0>)
lp_norm(resnet18)=tensor(517.5472, grad_fn=<AddBackward0>)
lp_norm(resnet18)=tensor(476.0836, grad_fn=<AddBackward0>)
Done!

I am assuming this works because I calculated the norm twice for the pre-trained net and it was the same both times before calling reset.

Though I was unhappy it wasn’t closer to the norm of the random net I must admit but I think this is good enough.

related: python 3.x - Reset parameters of a neural network in pytorch - Stack Overflow