Hello everyone,

I am now trying to implement a custom convolution kernel.

Let me take dilated convolution as example. (I know there are dilated conv in Pytorch. Just an example to state my question).

The kernel shold be something like:

```
[a, 0, b, 0, c ],
[0, 0, 0, 0, 0 ],
[d, 0, e, 0, f ],
[0, 0, 0, 0, 0 ],
[g, 0, h, 0, i ],
```

Browsing others discusions, I know the way to construct such kernel, and then use `F.conv2d`

.

But when calculating the gradients, those `0`

values in the kernel still have gradients. I just want them to be ‘0’ all the time and never update. Only `[a, b, c, d, e, f, g, h, i]`

can be updated.

How can I do this?

I know one way to do it is that manually set `weights.grad[index of `

0`] = 0`

. But suppose the model has a lot of kernels of this kind, it will not be efficient.

Regards,

LI