How to use multiprocessing in PyTorch?

I’m trying to use PyTorch with complex loss function. In order to accelerate the code, I hope that I can use the PyTorch multiprocessing package.

The first trial, I put 10x1 features into the NN and get 10x4 output.

After that, I want to pass 10x4 parameters into a function to do some calculation. (The calculation will be complex in the future.)

After calculating, the function will return a 10x1 array in total. This array will be set as NN_energy and calculate loss function.

Besides, I also want to know whether is another method to create a backward-able array to store the NN_energy array, instead of using “NN_energy = net(Data_in)[0:10,0]”.

Thanks a lot.


import torch

import numpy as np

from torch.autograd import Variable

from torch import multiprocessing

def func(msg,BOP):
    ans = (BOP[msg][0]+BOP[msg][1]/BOP[msg][2])*BOP[msg][3]
    return ans

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden_1, n_hidden_2, n_output):
        super(Net, self).__init__()
        self.hidden_1 = torch.nn.Linear(n_feature , n_hidden_1)  # hidden layer
        self.hidden_2 = torch.nn.Linear(n_hidden_1, n_hidden_2)  # hidden layer
        self.predict  = torch.nn.Linear(n_hidden_2, n_output  )  # output layer

    def forward(self, x):
        x = torch.tanh(self.hidden_1(x))      # activation function for hidden layer
        x = torch.tanh(self.hidden_2(x))      # activation function for hidden layer
        x = self.predict(x)                   # linear output
        return x

if name == 'main': # apply_async

    Data_in      = Variable( torch.from_numpy( np.asarray(list(range( 0,10))).reshape(10,1) ).float() )
    Ground_truth = Variable( torch.from_numpy( np.asarray(list(range(20,30))).reshape(10,1) ).float() )

    net          = Net( n_feature=1 , n_hidden_1=15 , n_hidden_2=15 , n_output=4 )     # define the network

    optimizer    = torch.optim.Rprop      ( net.parameters() )

    loss_func    = torch.nn.MSELoss()  # this is for regression mean squared loss

    NN_output    = net(Data_in)

    args = range(0,10)
    pool = multiprocessing.Pool()
    return_data = func, zip(args, NN_output) )

    NN_energy     = net(Data_in)[0:10,0]

    for i in range(0,10):
        NN_energy[i] = return_data[i]

    loss = torch.sqrt( loss_func( NN_energy , Ground_truth ) )     # must be (1. nn output, 2. target)


Error messages are shown as follows:

File “C:\ProgramData\Anaconda3\lib\site-packages\torch\multiprocessing\”, line 126, in reduce_tensor raise RuntimeError("Cowardly refusing to serialize non-leaf tensor which requires_grad, "

RuntimeError: Cowardly refusing to serialize non-leaf tensor which requires_grad, since autograd does not support crossing process boundaries. If you just want to transfer the data, call detach() on the tensor before serializing (e.g., putting it on the queue).