Here is my mapper for augmentation
def mapper2(dataset_dict):
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
#image = utils.read_image(dataset_dict["file_name"], format="BGR")
image = utils.read_image(dataset_dict["file_name"], format="RGB")
transform_list = [
T.RandomFlip(prob=0.5, horizontal=False, vertical=True)
,T.ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice')
#,T.RandomCrop('relative_range', (0.4, 0.6))
#,T.GridSampleTransform()
]
image, transforms = T.apply_transform_gens(transform_list, image)
dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32"))
annos = [
utils.transform_instance_annotations(obj, transforms, image.shape[:2])
for obj in dataset_dict.pop("annotations")
if obj.get("iscrowd", 0) == 0
]
instances = utils.annotations_to_instances(annos, image.shape[:2])
dataset_dict["instances"] = instances
return dataset_dict
I want to put normalize option like T.GridSampleTransform()
but when I perform the above code
TypeError: __init__() missing 2 required positional arguments: 'grid' and 'interp'