def forward(self, input):
if self.count%self.k==0:
self.mask, rnn_x= self.com_mask(torch.randn())
return F.conv2d(input, self.weight*self.mask, self.bias, self.stride,
self.padding, self.dilation, self.groups)
else:
return F.conv2d(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
Will the code chage the conv’s original parameters(weight\bias tensor)? For example, if the mask tensor is full of 0; when then next backpropagation, grad will add to a 0 weight?