Implementing a paper

I am trying to implement this paper.

I have written the following code but since this is my first try, I am not sure about the code I have written.

class myDataset(Dataset):
    def __getitem__(self, idx):
        self.item = self.sequences_1[idx] + self.sequences_2[idx]
        return self.item, self.labels[idx], self.vectorize

def collate_fn(data):
    items, labels, vectorizes = zip(*data)
    labels = torch.tensor(labels)
    items = torch.tensor(items)
    return items.double(), labels.double(), vectorizes

def fetch_dataloader(vectorize, data):
    shuffle_dataset = True
    random_seed= 42
    batch_size = 4

    dataset_size = len(data)
    indices = list(range(len(data)))
    split = 7000

    dataset = myDataset(vectorize, data)
    trainset, valset = random_split(dataset, [dataset_size-split , split])

    train_loader = DataLoader(trainset, batch_size=10, shuffle=True, collate_fn=collate_fn)
    validation_loader = DataLoader(valset, batch_size=10, shuffle=True, collate_fn=collate_fn)

    dataloaders = {"train":train_loader, "test":validation_loader}

    return dataloaders

class autoencoder(nn.Module):
    def __init__(self):
        super(autoencoder, self).__init__()
        self.encoder_softmax = nn.Sequential(
            nn.Linear(686, 256),
            nn.Linear(256, 2),

    def forward(self, x):
        x = self.encoder_softmax(x)
        return x

def train():
    data = InitializeDataLoader(num_test=7000)

    dataloaders = fetch_dataloader('tri', data)
    train_dl = dataloaders['train']
    test_dl = dataloaders['test']
    net = autoencoder()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    net =
    iterations = 10
    learning_rate = 0.98
    criterion = nn.CrossEntropyLoss()

    optimizer = torch.optim.Adam(
        net.parameters(), lr=learning_rate, weight_decay=1e-5)

    for epoch in range(iterations):
        loss = 0.0
        print("train_dl len: ", len(train_dl))
        # net.train()
        for i, data in enumerate(train_dl, 0):
            inputs, labels, vectorize = data
            labels = labels.long().to(device)
            inputs = inputs.float().to(device)
            outputs = net(inputs)
            train_loss = criterion(outputs, labels)
            loss += train_loss.item()

        loss = loss / len(train_dl)
        print("epoch : {}/{}, loss = {:.6f}".format(epoch + 1, iterations, loss))

        # create checkpoint variable and add important data
        checkpoint = {
            'epoch': epoch + 1,
            'state_dict': net.state_dict(),
            'optimizer': optimizer.state_dict(),
        # save checkpoint
        checkpoint_path = "./checkpoint/"
        best_model_path =  "./best_model/"
        save_ckp(checkpoint, False, checkpoint_path, best_model_path)

    return net

I have emitted some parts of code that didn’t seem important. I would be happy to share them too, if it helps.

nn.CrossEntropyLoss expects raw logits as the model outputs, so you should remove the last softmax layer in your model.

Do you have any other doubts regarding a specific part of the code?

I’m not sure about usage of float, and double casts. anytime I run and it complains, I change them :slight_smile: when should I use float? when should I use double? Also, how do I now test this model?

The default data type of float (float32) and double (float64) will trade more precision for performance, which seems to be used in e.g. simulations etc., where the 32bit precision is not enough.

Similar to your training loop, you could load your test data and test the model with it.
Have a look at this tutorial for more information.

1 Like