IndexError: index 2 is out of bounds for dimension 1 with size 2

Hello I am using torch metrics mAP linked here:
https://torchmetrics.readthedocs.io/en/stable/detection/mean_average_precision.html#torchmetrics.detection.mean_ap.MeanAveragePrecision
to evaluate my model, and I have been stuck for a while with this error.
Here is the code that I am using to convert my bboxes into tensors along with scores and labeles, then I’m implementing the metrics provided in the link above.
Here is the code:

from torch import IntTensor, Tensor
from torchmetrics.detection import MeanAveragePrecision
#%% Initialize lists of dictionaries for evaluation

preds = []
target = []

#%% A Function to add detections annotations
def add_dt_annotation(bboxes, scores, labeles):
    annotations = {
        'boxes': Tensor(bboxes),
        'scores': Tensor(scores),
        'labels': Tensor(labeles)
    }
    
    # Append the annotations to preds
    preds.append(annotations)

#%% A function to add ground truth annotations
def add_gt_annotation(bboxes, labeles):
    annotations = {
        'boxes': Tensor(bboxes),
        'labels': Tensor(labeles)
    }
    
    # Append the annotations to preds
    target.append(annotations)  

#%%
import glob, os

# Using glob to find all text files in the folder of the detections
text_files = glob.glob(os.path.join('abs dt', '*.txt'))

# Iterate over the files in the folder
for file in text_files:
    bboxes= []
    scores = []
    labeles = []
    # Open the file and read the text from each file
    with open(file, 'r') as text:
        lines = text.readlines()
        # Iterate over the lines of the text file
        for line in lines:
            # Extracting the coordinates
            coords= [float(coord) for coord in line.strip().split(' ')[0:]]
            bbox = coords[0:4]
            score = [coords[4]]
            label = [0]
            labeles.append(label)
            bboxes.append(bbox)
            scores.append(score)

        # Creating a dictionary for each line with a bbox using the function
        # For the detections
        add_dt_annotation(bboxes, scores, labeles)   

#%%
# Doing the same for the ground truth labels

# Using glob to find all text files in the folder of the ground truth
text_files = glob.glob(os.path.join('abs gt', '*.txt'))

# Iterate over the files in the folder
for file in text_files:
    bboxes= []
    labeles = []
    # Open the file and read the text from each file
    with open(file, 'r') as text:
        lines = text.readlines()
        # Iterate over the lines of the text file
        for line in lines:
            # Extracting the coordinates
            coords= [float(coord) for coord in line.strip().split(' ')[0:]]
            bbox = coords[0:4]
            label = [0]
            labeles.append(label)
            bboxes.append(bbox)
        # Creating a dictionary for each line with a bbox using the function
        # For the ground truth
        add_gt_annotation(bboxes, labeles) 



#%% 
#Evaluate
metric = MeanAveragePrecision(box_format='cxcywh', iou_type="bbox")
metric.update(preds, target)
from pprint import pprint
pprint(metric.compute())

And here is the first 3 samples of (preds) and (target)

preds:
[{‘boxes’: tensor([[1788.0000, 1472.5000, 88.0000, 21.0000],
[2272.5000, 1603.5000, 133.0000, 35.0000]]),
‘scores’: tensor([[0.8689],
[0.9038]]),
‘labels’: tensor([[0.],
[0.]])},
{‘boxes’: tensor([[2282.5000, 1485.0000, 75.0000, 22.0000]]),
‘scores’: tensor([[0.9018]]),
‘labels’: tensor([[0.]])},
{‘boxes’: tensor([[2046.5000, 1377.5000, 87.0000, 23.0000]]),
‘scores’: tensor([[0.8657]]),
‘labels’: tensor([[0.]])}]

target:
[{‘boxes’: tensor([[2297., 1602., 242., 44.],
[1779., 1471., 106., 26.]]),
‘labels’: tensor([[0.],
[0.]])},
{‘boxes’: tensor([[2284., 1484., 68., 24.],
[2220., 1441., 56., 18.],
[2009., 1355., 70., 22.]]),
‘labels’: tensor([[0.],
[0.],
[0.]])},
{‘boxes’: tensor([[2534., 1612., 120., 40.],
[2380., 1520., 88., 24.],
[2037., 1379., 90., 18.]]),
‘labels’: tensor([[0.],
[0.],
[0.]])}]

after all of that, I still recieve this error when it runs “pprint(metric.compute())”:
IndexError: index 2 is out of bounds for dimension 1 with size 2