Hi,
For this, there are different approaches but personally, I would create a class on top of previously defined model which you have weights for. Then add any other layers as another sequential to the new defined model. Something like this:
pretrained = torchvision.models.alexnet(pretrained=True)
class MyAlexNet(nn.Module):
def __init__(self, my_pretrained_model):
super(MyAlexNet, self).__init__()
self.pretrained = my_pretrained_model
self.my_new_layers = nn.Sequential(nn.Linear(1000, 100),
nn.ReLU(),
nn.Linear(100, 2))
def forward(self, x):
x = self.pretrained(x)
x = self.my_new_layers(x)
return x
my_extended_model = MyAlexNet(my_pretrained_model=pretrained)
my_extended_model
# here is the structure
MyAlexNet(
(pretrained): AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace=True)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace=True)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
) # till here corresponds to AlexNet's original implementation
(my_new_layers): Sequential(
(0): Linear(in_features=1000, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=2, bias=True)
)
)
Bests