Manually start Autograd of model using gradient

You could most likely copy the gradients to a2net and apply the optimizer afterwards to update the model.
Here is a small example of this workflow:

model1 = nn.Sequential(
    nn.Linear(10, 10),
    nn.ReLU(),
    nn.Linear(10, 1)
)
model2 = copy.deepcopy(model1)

# Compare parameters
for param1, param2 in zip(model1.parameters(), model2.parameters()):
    if (param1!=param2).any():
        raise RuntimeError('Param mismatch')

# create optimizer for model2
optimizer = torch.optim.SGD(model2.parameters(), lr=1e-3)

# calculate gradients in model1
model1(torch.randn(1, 10)).backward()
for name, param in model1.named_parameters():
    print(name, param.grad.norm())

# Copy gradients to model2
for param1, param2 in zip(model1.parameters(), model2.parameters()):
    param2.grad = param1.grad

# Update model2
optimizer.step()

# Compare again
# Compare parameters
for param1, param2 in zip(model1.parameters(), model2.parameters()):
    print((param1 - param2).abs().sum())

Let me know, if that would work.

1 Like