Hello all,

I am trying to convert my model to half-precision followed by mixed-precision training so that lesser memory could be used. I am not sure whether this is the correct way to do it -

```
def train_model(self, model, dataloader, epochs):
cudnn.benchmark = True
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
model.half()
model ,optimizer = amp.initialize(model, optimizer, opt_level='01')
model.train()
model.cuda()
scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=10, gamma=0.1)
#criterion = torch.nn.CrossEntropyLoss().cuda()
criterion = torch.nn.BCELoss().cuda()
for i in range(0, epochs):
scheduler.step()
train_accuracy = 0
net_loss = 0
for _, (data, label) in enumerate(dataloader):
optimizer.zero_grad()
data = data.half().cuda()
label = label.cuda()
out = model(data)
loss = criterion(out, label)
with amp.scale_loss(loss,optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
if torch.argmax(out) == label:
train_accuracy +=1
net_loss += loss.item()
print('------------------------------------------')
print('EPOCH ', i)
print(train_accuracy/len(dataloader))
print(net_loss/len(dataloader))
```

Could someone please guide me in the correct direction

Thanks in Advance