I’m trying to quantize a mobilenetv2 + SSDLite model from `https://github.com/qfgaohao/pytorch-ssd`

I followed the tutorial here `https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html`

doing **Post-training static quantization**

Before quantizing the model definition looks like this

```
SSD(
(base_net): Sequential(
(0): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU6(inplace=True)
)
(1): InvertedResidual(
(conv): Sequential(
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU6(inplace=True)
(3): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): InvertedResidual(
(conv): Sequential(
(0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU6(inplace=True)
(3): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)
(4): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU6(inplace=True)
(6): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
(7): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
**#Removed some stuff to stay under 32K characters**
(5): Conv2d(64, 24, kernel_size=(1, 1), stride=(1, 1))
)
(source_layer_add_ons): ModuleList()
)
```

Quantization is done using :

```
model.eval().to('cpu')
model.fuse_model()
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
torch.quantization.prepare(model, inplace=True)
torch.quantization.convert(model, inplace=True)
```

After quantization the model definition looks like this :

```
SSD(
(base_net): Sequential(
(0): Sequential(
(0): QuantizedConv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), scale=1.0, zero_point=0, padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): QuantizedReLU6(inplace=True)
)
(1): InvertedResidual(
(conv): Sequential(
(0): QuantizedConv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), scale=1.0, zero_point=0, padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): QuantizedReLU6(inplace=True)
(3): QuantizedConv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), scale=1.0, zero_point=0, bias=False)
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): InvertedResidual(
(conv): Sequential(
(0): QuantizedConv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), scale=1.0, zero_point=0, bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): QuantizedReLU6(inplace=True)
(3): QuantizedConv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), scale=1.0, zero_point=0, padding=(1, 1), groups=96, bias=False)
(4): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): QuantizedReLU6(inplace=True)
(6): QuantizedConv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), scale=1.0, zero_point=0, bias=False)
(7): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
**#Removed some stuff to stay under 32K characters**
(5): QuantizedConv2d(64, 24, kernel_size=(1, 1), stride=(1, 1), scale=1.0, zero_point=0)
)
(source_layer_add_ons): ModuleList()
)
```

Model size decreased from 14MB to 4MB.

but with this new definition how can i load the quantized model ?

I’m trying the following & getting the below error

```
#Saving
torch.save(q_model.state_dict(), project.quantized_trained_model_dir / file_name)
#Loading the saved quatized model
lq_model = create_mobilenetv2_ssd_lite(len(class_names), is_test=True)
lq_model.load(project.quantized_trained_model_dir / file_name)
#Error
RuntimeError: Error(s) in loading state_dict for SSD:
Unexpected key(s) in state_dict: "base_net.0.0.scale", "base_net.0.0.zero_point", "base_net.0.0.bias", "base_net.1.conv.0.scale", "base_net.1.conv.0.zero_point", "base_net.1.conv.0.bias", "base_net.1.conv.3.scale", "base_net.1.conv.3.zero_point", "base_net.1.conv.3.bias", "base_net.2.conv.0.scale"...
```

I do understand that after quantization some layers are changed `Conv2d -> QuantizedConv2d `

but does that mean that I have to have 2 model definitions for original & quantized versions?

This a diff of the definitions