Multiclass classification: Dimension out of range (expected to be in range of [-1, 0], but got 1)

When I use cross-entropy loss function for multiclass text classification, I get the error “Dimension out of range (expected to be in range of [-1, 0], but got 1)”

This is my code:

def train(model, iterator):
    
    ...
    for batch in iterator:
        text, text_lengths = batch.Turn
        
        optimizer.zero_grad()
        predictions = model(text, text_lengths).squeeze(1)
        loss = criterion(predictions, batch.label)
        acc = categorical_accuracy(predictions, batch.label)

       ...

Dataset:

TEXT = data.Field(tokenize = 'spacy', include_lengths = True)
LABEL = data.LabelField(dtype = torch.long)

Forward:

 def forward(self, text, text_lengths):
      
        
        embedded = self.embedding(text)
   
        
        packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths)
        
        packed_output, (hidden, cell) = self.rnn(packed_embedded)
  

        hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
        output = self.fc1(hidden)
        output = self.dropout(self.fc2(output))
              
            
        return output

LSTM setup for 3-class classification:

num_epochs = 25
learning_rate = 0.001
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 128
OUTPUT_DIM = 1
N_LAYERS = 1
BIDIRECTIONAL = True
DROPOUT = 0.2
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] # padding

Can you print out the shape of your predictions and your labels?