I’m currently trying to build a network for Human Activity Recognition using pyTorch and DSADS dataset.
This is my neural network definition.
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d((1, 2), stride=2)
self.conv1 = nn.Conv2d(6,16, (1, 6))
self.conv2 = nn.Conv2d(16,32, (1, 6))
self.fc1 = nn.Linear(32 * 1 * 3, 70)
self.fc2 = nn.Linear(70, 30)
self.fc3 = nn.Linear(30, 19)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9, weight_decay=0.005)
This is how I load train and test data.
class data_loader(Dataset):
def __init__(self, samples, labels, t):
self.samples = samples
self.labels = labels
self.T = t
def __getitem__(self, index):
sample, target = self.samples[index], self.labels[index]
if self.T:
return self.T(sample), target
else:
return sample, target
def __len__(self):
return len(self.samples)
# train_data_reshaped: numpy array of dimension (57000, 6, 1, 30)
# test_data_reshaped: numpy array of dimension (22800, 6, 1, 30)
train_set = data_loader(train_data_reshaped, train_labels, transform)
test_set = data_loader(test_data_reshaped, test_labels, transform)
train_loader = DataLoader(train_set, batch_size=64, shuffle=True, drop_last=True)
test_loader = DataLoader(test_set, batch_size=64, shuffle=False)
Training and testing:
for epoch in range(30):
for (inputs, labels) in train_loader:
inputs, labels = inputs.to(device).float(), labels.to(device)
inputs = inputs.view(-1, 6, 1, 30)
labels = labels[:, -1].long()
labels = labels - 1
optimizer.zero_grad()
outputs = net(inputs)
print("outputs: ", outputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
for (inputs, labels) in test_loader:
inputs, labels = inputs.to(device).float(), labels.to(device)
inputs = inputs.view(-1, 6, 1, 30)
labels = labels[:, -1].long()
labels = labels - 1
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
I expect the net will produce non-negative outputs each of them represents probability. However, my net produces negative output like this:
outputs: tensor([[-0.2586, -0.0550, 0.2156, ..., 0.0132, -0.1516, 0.0052],
[-0.2586, -0.0952, 0.2352, ..., 0.0199, -0.1925, 0.0107],
[-0.4870, -0.0813, 0.4605, ..., 0.0353, -0.1569, 0.0322],
...,
[-0.2445, -0.1426, 0.1625, ..., 0.0872, -0.1863, 0.0826],
[-0.3659, -0.1266, 0.3297, ..., 0.0860, -0.1500, 0.0035],
[-0.3237, -0.0675, 0.2883, ..., 0.0384, -0.2692, 0.0562]],
grad_fn=<AddmmBackward>)
Any idea of what I did wrong? Thanks in advance.