Normalization in the mnist example

But the PyTorch Tutorial https://github.com/pytorch/tutorials/blob/master/Deep%20Learning%20with%20PyTorch.ipynb says we should always use 0.5 since we are getting PIL images:

# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1]
transform=transforms.Compose([transforms.ToTensor(),
                              transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                             ])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, 
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, 
                                          shuffle=False, num_workers=2)

Why should be any different for MNIST dataset?

Thanks in advance,

David

5 Likes