Hi Thre
How do I fix the below error:
NotImplementedError Traceback (most recent call last)
<ipython-input-2-db4fff233cd4> in <module>
6 input = torch.rand(5,3)
7 print(input)
----> 8 out = model(input)
9 for epoch in range(2):
10 running_loss = 0.0
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
720 result = self._slow_forward(*input, **kwargs)
721 else:
--> 722 result = self.forward(*input, **kwargs)
723 for hook in itertools.chain(
724 _global_forward_hooks.values(),
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _forward_unimplemented(self, *input)
221 # https://github.com/python/mypy/issues/8795
222 def _forward_unimplemented(self, *input: Any) -> None:
--> 223 raise NotImplementedError
224
225 r"""Defines the computation performed at every call.
NotImplementedError:
My code is below:
# Setting up the environment
import torch
import torchvision
from torchvision import transforms, datasets
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.optim as optim
#Global variables
batch_size = 10
num_images_display = 60
#Load data
train_data = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_data = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
#Neural network class
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.L1 = nn.Linear(28 * 28,512)
self.L2 = nn.Linear(512, 10)
def foward(self, x):
x = self.L1(x)
x = self.L2(x)
x = nn.Softmax(x, dim = 1)
return x
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
print(model)
# Train the model / network
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.003)
model.train()
for epoch in range(2):
running_loss = 0.0
for images, labels in train_data:
# Zero the parameter gradients and training pass
optimizer.zero_grad()
# Outputs
outputs = model(images)