@albanD just recently shared how to measure memory usage via TorchDispatchMode
here. Applied to your model I see:
import torch
import torch.nn as nn
from torch.utils._pytree import tree_map_only
from torch.utils._python_dispatch import TorchDispatchMode
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.utils.weak import WeakIdKeyDictionary
import weakref
import math
# Track all the memory being used by Tensors.
# Only max is tracked but others can be added.
MEMORY_USE = WeakIdKeyDictionary()
MEMORY_MAX = 0
# Minimum allocation size
PYTORCH_MIN_ALLOCATE = 2**9
def update_stats():
global MEMORY_MAX
curr_use = 0
for k, v in MEMORY_USE.items():
curr_use += math.ceil(k.size() * k.element_size()/PYTORCH_MIN_ALLOCATE) * PYTORCH_MIN_ALLOCATE
if MEMORY_MAX < curr_use:
MEMORY_MAX = curr_use
# Should be called on every Tensor created
def track(t:torch.Tensor):
def cb(_):
update_stats()
st = t.untyped_storage()
wt = weakref.ref(st, cb)
MEMORY_USE[st] = wt
update_stats()
# Use this Mode to call track on every Tensor being created by functions
class MemoryTrackingMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args, kwargs=None):
res = func(*args, **kwargs or {})
tree_map_only(torch.Tensor, track, res)
return res
with FakeTensorMode(), MemoryTrackingMode():
model = nn.Sequential(
nn.Conv2d(1, 20, 5),
nn.ReLU(),
nn.Conv2d(20, 64, 5),
nn.ReLU()
)
input_tensor = torch.randn(1, 1, 28, 28)
model(input_tensor)
model(input_tensor)
print(f"{MEMORY_MAX}")
output = model(input_tensor)
output = model(input_tensor)
print(f"with return: {MEMORY_MAX}")
385536
with return: 534016