I would expect the output of RNN to be contiguous in memory. This doesn’t seem to be the case. For instance, the final output in this snippet has output.is_contiguous() == False.

```
train = True
num_layers = 1
bidirectional = True
bi = 2 if bidirectional else 1
x = Variable(torch.from_numpy(_x), volatile=not train)
batch_size, seq_length, input_dim = x.size()
rnn = nn.LSTM(input_dim, model_dim / bi, num_layers,
batch_first=True,
bidirectional=bidirectional,
)
h0 = Variable(torch.zeros(num_layers * bi, batch_size, model_dim / bi), volatile=not train)
c0 = Variable(torch.zeros(num_layers * bi, batch_size, model_dim / bi), volatile=not train)
print(x.is_contiguous())
# True
# Expects (input, h_0):
# input => batch_size x seq_length x model_dim
# h_0 => (num_layers x bi[1,2]) x batch_size x model_dim
# c_0 => (num_layers x bi[1,2]) x batch_size x model_dim
output, (hn, cn) = self.encode(x, (h0, c0))
print(output.is_contiguous())
# False
```