Partially mask gradient with scaling hyper parameter

I have this function to block the gradient based on the mask

class blocked_grad(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, mask):
        ctx.save_for_backward(x, mask)
        return x

    @staticmethod
    def backward(ctx, grad_output):
        x, mask = ctx.saved_tensors
        return grad_output * mask, mask * 0.0

If the mask values are 0, 1 then I am wondering how I could partially mask gradient with some scaling parameter?