Problem when using pytorch

I’m using pytorch on Ubuntu and got an issue:

>>> import torch
>>> torch.cuda.is_available();
/home/lijiyuan/anaconda3/lib/python3.9/site-packages/torch/cuda/__init__.py:129: UserWarning: CUDA initialization: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 101: invalid device ordinal (Triggered internally at /opt/conda/conda-bld/pytorch_1727986725725/work/c10/cuda/CUDAFunctions.cpp:108.)
  return torch._C._cuda_getDeviceCount() > 0
False

Here is my environment:

PyTorch version: 2.5.0
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (Ubuntu 10.3.0-1ubuntu1~18.04~1) 10.3.0
Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake version: version 3.31.0
Libc version: glibc-2.27

Python version: 3.9.13 (main, Aug 25 2022, 23:26:10)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.27
Is CUDA available: False
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: 
GPU 0: NVIDIA GeForce RTX 2080 Ti
GPU 1: NVIDIA GeForce RTX 2080 Ti
GPU 2: NVIDIA GeForce RTX 2080 Ti
GPU 3: NVIDIA GeForce RTX 2080 Ti
GPU 4: NVIDIA GeForce RTX 2080 Ti
GPU 5: NVIDIA GeForce RTX 2080 Ti

Nvidia driver version: 535.146.02
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              96
On-line CPU(s) list: 0-95
Thread(s) per core:  2
Core(s) per socket:  24
Socket(s):           2
NUMA node(s):        2
Vendor ID:           GenuineIntel
CPU family:          6
Model:               85
Model name:          Intel(R) Xeon(R) Platinum 8260 CPU @ 2.30GHz
Stepping:            5
CPU MHz:             1000.038
CPU max MHz:         3900.0000
CPU min MHz:         1000.0000
BogoMIPS:            4600.00
Virtualization:      VT-x
L1d cache:           32K
L1i cache:           32K
L2 cache:            1024K
L3 cache:            33792K
NUMA node0 CPU(s):   0-23,48-71
NUMA node1 CPU(s):   24-47,72-95
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] flake8==4.0.1
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.21.5
[pip3] numpydoc==1.4.0
[pip3] torch==2.5.0
[pip3] torchaudio==2.5.0
[pip3] torchvision==0.20.0
[pip3] triton==3.1.0
[conda] blas                      1.0                         mkl  
[conda] cuda-cudart               11.8.89                       0    nvidia
[conda] cuda-cupti                11.8.87                       0    nvidia
[conda] cuda-libraries            11.8.0                        0    nvidia
[conda] cuda-nvrtc                11.8.89                       0    nvidia
[conda] cuda-nvtx                 11.8.86                       0    nvidia
[conda] cuda-runtime              11.8.0                        0    nvidia
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libcublas                 11.11.3.6                     0    nvidia
[conda] libcufft                  10.9.0.58                     0    nvidia
[conda] libcurand                 10.3.7.77                     0    nvidia
[conda] libcusolver               11.4.1.48                     0    nvidia
[conda] libcusparse               11.7.5.86                     0    nvidia
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] mkl                       2021.4.0           h06a4308_640  
[conda] mkl-service               2.4.0            py39h7f8727e_0  
[conda] mkl_fft                   1.3.1            py39hd3c417c_0  
[conda] mkl_random                1.2.2            py39h51133e4_0  
[conda] numpy                     1.21.5           py39h6c91a56_3  
[conda] numpy-base                1.21.5           py39ha15fc14_3  
[conda] numpydoc                  1.4.0            py39h06a4308_0  
[conda] pytorch                   2.5.0           py3.9_cuda11.8_cudnn9.1.0_0    pytorch
[conda] pytorch-cuda              11.8                 h7e8668a_6    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torchaudio                2.5.0                py39_cu118    pytorch
[conda] torchtriton               3.1.0                      py39    pytorch
[conda] torchvision               0.20.0               py39_cu118    pytorch

The output of nvidia-smi is here:

+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.146.02             Driver Version: 535.146.02   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 2080 Ti     Off | 00000000:1A:00.0 Off |                  N/A |
| 27%   26C    P8              22W / 250W |      5MiB / 11264MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce RTX 2080 Ti     Off | 00000000:1B:00.0 Off |                  N/A |
| 27%   27C    P8              20W / 250W |      5MiB / 11264MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce RTX 2080 Ti     Off | 00000000:3D:00.0 Off |                  N/A |
| 27%   25C    P8              20W / 250W |      5MiB / 11264MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce RTX 2080 Ti     Off | 00000000:3E:00.0 Off |                  N/A |
| 27%   27C    P8              21W / 250W |      5MiB / 11264MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   4  NVIDIA GeForce RTX 2080 Ti     Off | 00000000:B1:00.0 Off |                  N/A |
| 27%   27C    P8               1W / 250W |      5MiB / 11264MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   5  NVIDIA GeForce RTX 2080 Ti     Off | 00000000:B2:00.0 Off |                  N/A |
| 27%   25C    P8              19W / 250W |      5MiB / 11264MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
                                                                                         
+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|    0   N/A  N/A      3104      G   /usr/lib/xorg/Xorg                            4MiB |
|    1   N/A  N/A      3104      G   /usr/lib/xorg/Xorg                            4MiB |
|    2   N/A  N/A      3104      G   /usr/lib/xorg/Xorg                            4MiB |
|    3   N/A  N/A      3104      G   /usr/lib/xorg/Xorg                            4MiB |
|    4   N/A  N/A      3104      G   /usr/lib/xorg/Xorg                            4MiB |
|    5   N/A  N/A      3104      G   /usr/lib/xorg/Xorg                            4MiB |
+---------------------------------------------------------------------------------------+

The error often points to a broken driver installation or another setup issue.

You could launch any sample CUDA application masking each device to check if a specific GPUid is triggering this error.

Thank you! I will try.

I ran following command to check each GPU:

CUDA_VISIBLE_DEVICES=x ./deviceQuery

and all my GPU return same result:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

cudaGetDeviceCount returned 101
-> invalid device ordinal
Result = FAIL

Does this mean all of them are broken?

This means your setup has issues communicating with the GPUs and you could try to e.g. reinstall the NVIDIA driver again.

thank you, I’ll try it

Solved. The reason is, weeks ago two of our GPUs have some problems so I unplugged the cables of them, but I didn’t unplug the body of GPUs, I check the dmesg and found the kernel will try to register them when boot and fail. After fully removing them, the problem is gone.