I’m using pytorch on Ubuntu and got an issue:
>>> import torch
>>> torch.cuda.is_available();
/home/lijiyuan/anaconda3/lib/python3.9/site-packages/torch/cuda/__init__.py:129: UserWarning: CUDA initialization: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 101: invalid device ordinal (Triggered internally at /opt/conda/conda-bld/pytorch_1727986725725/work/c10/cuda/CUDAFunctions.cpp:108.)
return torch._C._cuda_getDeviceCount() > 0
False
Here is my environment:
PyTorch version: 2.5.0
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (Ubuntu 10.3.0-1ubuntu1~18.04~1) 10.3.0
Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake version: version 3.31.0
Libc version: glibc-2.27
Python version: 3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.27
Is CUDA available: False
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 2080 Ti
GPU 1: NVIDIA GeForce RTX 2080 Ti
GPU 2: NVIDIA GeForce RTX 2080 Ti
GPU 3: NVIDIA GeForce RTX 2080 Ti
GPU 4: NVIDIA GeForce RTX 2080 Ti
GPU 5: NVIDIA GeForce RTX 2080 Ti
Nvidia driver version: 535.146.02
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8260 CPU @ 2.30GHz
Stepping: 5
CPU MHz: 1000.038
CPU max MHz: 3900.0000
CPU min MHz: 1000.0000
BogoMIPS: 4600.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] flake8==4.0.1
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.21.5
[pip3] numpydoc==1.4.0
[pip3] torch==2.5.0
[pip3] torchaudio==2.5.0
[pip3] torchvision==0.20.0
[pip3] triton==3.1.0
[conda] blas 1.0 mkl
[conda] cuda-cudart 11.8.89 0 nvidia
[conda] cuda-cupti 11.8.87 0 nvidia
[conda] cuda-libraries 11.8.0 0 nvidia
[conda] cuda-nvrtc 11.8.89 0 nvidia
[conda] cuda-nvtx 11.8.86 0 nvidia
[conda] cuda-runtime 11.8.0 0 nvidia
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libcublas 11.11.3.6 0 nvidia
[conda] libcufft 10.9.0.58 0 nvidia
[conda] libcurand 10.3.7.77 0 nvidia
[conda] libcusolver 11.4.1.48 0 nvidia
[conda] libcusparse 11.7.5.86 0 nvidia
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py39h7f8727e_0
[conda] mkl_fft 1.3.1 py39hd3c417c_0
[conda] mkl_random 1.2.2 py39h51133e4_0
[conda] numpy 1.21.5 py39h6c91a56_3
[conda] numpy-base 1.21.5 py39ha15fc14_3
[conda] numpydoc 1.4.0 py39h06a4308_0
[conda] pytorch 2.5.0 py3.9_cuda11.8_cudnn9.1.0_0 pytorch
[conda] pytorch-cuda 11.8 h7e8668a_6 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torchaudio 2.5.0 py39_cu118 pytorch
[conda] torchtriton 3.1.0 py39 pytorch
[conda] torchvision 0.20.0 py39_cu118 pytorch
The output of nvidia-smi is here:
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.146.02 Driver Version: 535.146.02 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 2080 Ti Off | 00000000:1A:00.0 Off | N/A |
| 27% 26C P8 22W / 250W | 5MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA GeForce RTX 2080 Ti Off | 00000000:1B:00.0 Off | N/A |
| 27% 27C P8 20W / 250W | 5MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA GeForce RTX 2080 Ti Off | 00000000:3D:00.0 Off | N/A |
| 27% 25C P8 20W / 250W | 5MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA GeForce RTX 2080 Ti Off | 00000000:3E:00.0 Off | N/A |
| 27% 27C P8 21W / 250W | 5MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA GeForce RTX 2080 Ti Off | 00000000:B1:00.0 Off | N/A |
| 27% 27C P8 1W / 250W | 5MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA GeForce RTX 2080 Ti Off | 00000000:B2:00.0 Off | N/A |
| 27% 25C P8 19W / 250W | 5MiB / 11264MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 3104 G /usr/lib/xorg/Xorg 4MiB |
| 1 N/A N/A 3104 G /usr/lib/xorg/Xorg 4MiB |
| 2 N/A N/A 3104 G /usr/lib/xorg/Xorg 4MiB |
| 3 N/A N/A 3104 G /usr/lib/xorg/Xorg 4MiB |
| 4 N/A N/A 3104 G /usr/lib/xorg/Xorg 4MiB |
| 5 N/A N/A 3104 G /usr/lib/xorg/Xorg 4MiB |
+---------------------------------------------------------------------------------------+