QuantStub with values in [-128,127]

Dear all,

I have trained a ResNet model using PACT. Now I want to convert it using the static quantization Pytorch package. Can I force torch.quantization.QuantStub() to map my input to a qint8 format, that means integer values between [-128,127], instead of values between [0, 256]?

Thanks in advance,


Use qint8 for the dtype argument of the QConfig. e.g:

qconfig = QConfig(activation=MovingAverageMinMaxObserver.with_args(qscheme=torch.per_tensor_symmetric, dtype=torch.qint8), weight=PerChannelMinMaxObserver.with_args(dtype=torch.qint8, qscheme=torch.per_channel_symmetric))

Note that this will have a degraded accuracy

Dear @myshabako,

thanks for the answer. Forcing the QConfig as you suggested produces the following error

RuntimeError: expected scalar type QUInt8 but found QInt8

during the QuantizedConv2D forward. Can you know why it is not supported?

Thanks in advance,


Hi @Massimiliano_Datres , you can try using the qnnpack backend which supports qint8 activations for some ops. The fbgemm backend only supports quint8 activations.

1 Like