Question - Define the loss function with given output and labels

Hi there, I am newbie student studying natural language processing.

What i am writing is named entity recognition for personal study.

import torch
from torch import nn
import numpy as np

class LSTM(nn.Module):
    def __init__(self, word_vocab, embed_dim=50, hidden_size=50, num_class=18) -> None:
        self.word_vocab = word_vocab
        self.word_embedding = nn.Embedding(len(word_vocab), embedding_dim=embed_dim)
        self.lstm = nn.LSTM(embed_dim, hidden_size, num_layers=2, dropout=0.5, bidirectional=True)
        self.fc = nn.Linear(embed_dim * 2, num_class)

    def forward(self, x_train):
        word_embed = self.word_embedding(x_train)

        output_word, (hidden, state_word) = self.lstm(word_embed)
        outputs = self.fc(output_word)

        return outputs.float()

Above is the simple lstm network code that all i’ve wrote.

Below is the training code.

from model.loader import get_data_loader
from model.lstm import LSTM
from torch import nn
from torch.optim import Adam

if __name__ == '__main__':
    train_data_loader, test_data_loader, word2idx = get_data_loader(path='./rsc')
    lstm_model = LSTM(word2idx)
    parameters = filter(lambda p: p.requires_grad, lstm_model.parameters())

    c = nn.CrossEntropyLoss(ignore_index=0)
    optimizer = Adam(parameters, lr=1e-4)

    for step, (x_train, y_train) in enumerate(train_data_loader):
        output = lstm_model(x_train)
        loss = c(output, y_train)




Shape of output and label is torch.Size([32, 99, 18]) torch.Size([32, 99]) which means first is [batch_size * max_seq_length * num_tag], second is [batch_size * max_seq_length].

My question is as follows:

  • How to use cross entropy loss function?
  • There is a tokens in training data, So I have to exclude tokens when calculate loss. It can be solved through nn.CrossEntropyLoss(ignore_index=0) ?

Thank you for reading this questions.


To use nn.CrossEntropyLoss, manipulated shape of output and label.

outputs.view(-1, outputs.shape[2]) # dim => (batch_size * max_seq_length) * num_tag
y_train.view(y_train.shape[0] * y_train.shape[1]) (batch_size * max_seq_length)

For example, let batch size is 32, max_seq_length = 80, num _tag = 18, then output shape will be (2560 * 18), label shape will be (2560, ).